コード例 #1
0
def main():
    """Tesing the performance of LogisticRegression.
    """
    @run_time
    def batch():
        print("Tesing the performance of LogisticRegression(batch)...")
        # Train model
        clf = LogisticRegression()
        clf.fit(data=data_train, label=label_train, learning_rate=0.1, epochs=1000)
        # Model evaluation
        model_evaluation(clf, data_test, label_test)
        print(clf)

    @run_time
    def stochastic():
        print("Tesing the performance of LogisticRegression(stochastic)...")
        # Train model
        clf = LogisticRegression()
        clf.fit(data=data_train, label=label_train, learning_rate=0.01, epochs=100,
                method="stochastic", sample_rate=0.8)
        # Model evaluation
        model_evaluation(clf, data_test, label_test)
        print(clf)

    # Load data
    data, label = load_breast_cancer()
    data = min_max_scale(data)
    # Split data randomly, train set rate 70%
    data_train, data_test, label_train, label_test = train_test_split(
        data, label, random_state=10)
    batch()
    print()
    stochastic()
コード例 #2
0
def main():
    @run_time
    def batch():
        print("Tesing the performance of LinearRegression(batch)...")
        # Train model
        reg = LinearRegression()
        reg.fit(X=X_train, y=y_train, lr=0.1, epochs=1000)
        # Model evaluation
        get_r2(reg, X_test, y_test)
        print(reg)

    @run_time
    def stochastic():
        print("Tesing the performance of LinearRegression(stochastic)...")
        # Train model
        reg = LinearRegression()
        reg.fit(X=X_train,
                y=y_train,
                lr=0.05,
                epochs=50,
                method="stochastic",
                sample_rate=0.6)
        # Model evaluation
        get_r2(reg, X_test, y_test)
        print(reg)

    # Load data
    X, y = load_boston_house_prices()
    X = min_max_scale(X)
    # Split data randomly, train set rate 70%
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=20)
    batch()
    stochastic()
コード例 #3
0
def main():
    print("Tesing the performance of Kmeans...")
    # Load data
    X, y = load_breast_cancer()
    X = min_max_scale(X)
    # Train model
    est = KMeans()
    k = 2
    est.fit(X, k)
    print()
    # Model performance
    prob_pos = sum(y) / len(y)
    print("Positive probability of X is:%.1f%%.\n" % (prob_pos * 100))
    y_hat = est.predict(X)
    cluster_pos_tot_cnt = {i: [0, 0] for i in range(k)}
    for yi_hat, yi in zip(y_hat, y):
        cluster_pos_tot_cnt[yi_hat][0] += yi
        cluster_pos_tot_cnt[yi_hat][1] += 1
    cluster_prob_pos = {k: v[0] / v[1] for k, v in cluster_pos_tot_cnt.items()}
    for i in range(k):
        tot_cnt = cluster_pos_tot_cnt[i][1]
        prob_pos = cluster_prob_pos[i]
        print("Count of elements in cluster %d is:%d." %
              (i, tot_cnt))
        print("Positive probability of cluster %d is:%.1f%%.\n" %
              (i, prob_pos * 100))
コード例 #4
0
def main():
    @run_time
    def batch():
        print("Tesing the performance of LogisticRegression(batch)...")
        # Train model
        clf = LogisticRegression()
        clf.fit(X=X_train, y=y_train, lr=0.1, epochs=1000)
        # Model evaluation
        model_evaluation(clf, X_test, y_test)
        print(clf)

    @run_time
    def stochastic():
        print("Tesing the performance of LogisticRegression(stochastic)...")
        # Train model
        clf = LogisticRegression()
        clf.fit(X=X_train, y=y_train, lr=0.01, epochs=100,
                method="stochastic", sample_rate=0.8)
        # Model evaluation
        model_evaluation(clf, X_test, y_test)
        print(clf)

    # Load data
    X, y = load_breast_cancer()
    X = min_max_scale(X)
    # Split data randomly, train set rate 70%
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)
    batch()
    print()
    stochastic()
コード例 #5
0
def main():
    """Tesing the performance of LinearRegression.
    """
    @run_time
    def batch():
        print("Tesing the performance of LinearRegression(batch)...")
        # Train model
        reg = LinearRegression()
        reg.fit(data=data_train, label=label_train, learning_rate=0.1, epochs=1000)
        # Model evaluation
        get_r2(reg, data_test, label_test)
        print(reg)

    @run_time
    def stochastic():
        print("Tesing the performance of LinearRegression(stochastic)...")
        # Train model
        reg = LinearRegression()
        reg.fit(data=data_train, label=label_train, learning_rate=0.05, epochs=50,
                method="stochastic", sample_rate=0.6)
        # Model evaluation
        get_r2(reg, data_test, label_test)
        print(reg)

    # Load data
    data, label = load_boston_house_prices()
    data = min_max_scale(data)
    # Split data randomly, train set rate 70%
    data_train, data_test, label_train, label_test = train_test_split(
        data, label, random_state=20)
    batch()
    stochastic()
コード例 #6
0
def main():
    print("Tesing the performance of KNN regressor...")
    # Load data
    X, y = load_boston_house_prices()
    X = min_max_scale(X)
    # Split data randomly, train set rate 70%
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)
    # Train model
    reg = KNeighborsRegressor()
    reg.fit(X=X_train, y=y_train, k_neighbors=3)
    # Model evaluation
    get_r2(reg, X_test, y_test)
コード例 #7
0
def main():
    print("Tesing the performance of KNN classifier...")
    # Load data
    X, y = load_breast_cancer()
    X = min_max_scale(X)
    # Split data randomly, train set rate 70%
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=20)
    # Train model
    clf = KNeighborsClassifier()
    clf.fit(X_train, y_train, k_neighbors=21)
    # Model evaluation
    model_evaluation(clf, X_test, y_test)
コード例 #8
0
def main():
    print("Tesing the performance of Ridge Regressor(stochastic)...")
    # Load data
    X, y = load_boston_house_prices()
    X = min_max_scale(X)
    # Split data randomly, train set rate 70%
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)
    # Train model
    reg = Ridge()
    reg.fit(X=X_train, y=y_train, lr=0.001, epochs=1000,
            method="stochastic", sample_rate=0.5, alpha=1e-7)
    # Model evaluation
    get_r2(reg, X_test, y_test)
コード例 #9
0
def main():
    """Tesing the performance of MLP.
    """
    print("Tesing the performance of MLP....")
    # Load data
    data, label = load_boston_house_prices()
    data = min_max_scale(data)
    # Split data randomly, train set rate 70%
    data_train, data_test, label_train, label_test = train_test_split(
        data, label, random_state=20)
    # Train model
    reg = MLP()
    reg.fit(data=data_train, label=label_train, n_hidden=8,
            epochs=500, batch_size=8, learning_rate=0.0008)
    # Model evaluation
    get_r2(reg, data_test, label_test)
    print(reg)