コード例 #1
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task15():
    """
    1.oroginal
    2. original + noise
    Контуры
    а)erosion
    b)silatation
    :return:
    """
    img = IO.read_image(r"data/Dots.jpg")
    img = to_one_chanel(img)
    print(img.max(), img.mean(), img.min())
    img = 255 - img
    print(set(img.flatten()))
    img = m.threshold_filter_2d(img, 100)
    print(set(img.flatten()))
    img2 = PF.erosion(img, 17)
    img3 = PF.dilatation(img2, 17)
    IO.show_images([m.normalize(img),
                    m.normalize(img2),
                    m.normalize(img3)],
                   fig_name="Эрозия, пример")

    # with model
    img = IO.read_image(r"data/MODEL.jpg")
    img2 = m.threshold_filter_2d(img, 100)
    img3 = PF.erosion(img2, 10)
    img4 = img2 - img3
    img5 = PF.dilatation(img2, 10)
    img6 = img5 - img2
    IO.show_images([m.normalize(img2),
                    m.normalize(img4),
                    m.normalize(img6)]["Изначальное бинаризированное",
                                       "Эрозия", "Дилатация"],
                   fig_name="Эрозия, детектирования края")
コード例 #2
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task14():
    """
    1 оригонал (оригинал + шум (sp + noise + both))
    grad (sobel)
    laplasian
    :return:
    """
    img = IO.read_image(r"data/MODEL.jpg")
    img2 = PF.gradient_sobel(img, "h")
    img3 = PF.gradient_sobel(img, "v")
    img4 = PF.gradient_sobel(img, "a")
    img5 = m.normalize(np.absolute(img2)) +\
                    m.normalize(np.absolute(img3))
    IO.show_images([
        img,
        m.normalize(img2),
        m.normalize(img3),
        m.normalize(img4), img5, img - img5
    ], [
        "Изначальное изображение", "Маска собела горизонт",
        "Маска собела верт", "Сумма нескольких масок",
        "Применение горизонтальной и вертикальной масок",
        "Суммируем ради красоты"
    ],
                   fig_name="Маски Собела")
    img2 = PF.laplassian(img, "a")
    img3 = PF.laplassian(img, "b")
    IO.show_images([
        m.normalize(img2),
        m.normalize(img3), img + m.normalize(img2), img + m.normalize(img3)
    ], [
        "Лаплассиан, маска1", "Лапл, маска 2", "Сумма с маск 1",
        "Сумма с маской 2"
    ],
                   fig_name="Лаплассиан")
コード例 #3
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task9():
    """
    Усредняющий и медианный филтр к шумам
    :return:
    """
    img = IO.read_image("data/MODEL.jpg")
    r_n, sp_n = task8()
    filetered_r_n = m.normalize(PF.averaging_filter(r_n))
    filetered_sp_n = m.normalize(PF.averaging_filter(sp_n))
    filetered_med_r_n = m.normalize(PF.median_filter(r_n))
    filetered_med_sp_n = m.normalize(PF.median_filter(sp_n, 7))
    plt.imshow(r_n, cmap="gray")
    plt.figure()
    plt.imshow(filetered_r_n, cmap="gray")
    plt.figure()
    plt.imshow(filetered_med_r_n, cmap="gray")
    plt.show()
    plt.imshow(img, cmap='gray')
    plt.figure()
    plt.imshow(sp_n, cmap="gray")
    plt.figure()
    plt.imshow(filetered_sp_n, cmap="gray")
    plt.figure()
    plt.imshow(filetered_med_sp_n, cmap="gray")
    plt.show()
コード例 #4
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task10():
    """
    Восстановление изображений
    :return:
    """
    img = IO.read_image("data/image2.jpg")
    img = to_one_chanel(img)
    img_f = np.empty(img.shape)
    for i in range(img.shape[0]):
        img_f[i] = m.fourier(img[i])[1]

    for j in range(img_f.shape[1]):
        img_f[:, j] = m.fourier(img_f[:, j])[1]

    # plt.imshow(m.normalize(img_f), cmap='gray')
    back_f_img = np.empty(img.shape)

    for j in range(img.shape[0]):
        back_f_img[j] = m.reverse_fourier(img_f[j])
    for i in range(img.shape[1]):
        back_f_img[:, i] = m.reverse_fourier(back_f_img[:, i])

    f = plt.figure()
    plt.imshow(back_f_img, cmap='gray')
    plt.show()
コード例 #5
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task1():
    """
    reading picture, find its row and col variance and median, plot histogram
    """
    img = IO.read_image("photo1.jpg", r".\data")
    ma_col = img.max()
    mi_col = img.min()
    avg_r = np.empty(img.shape[0])
    disp_r = np.empty(img.shape[0])
    for i in range(img.shape[0]):
        avg_r[i] = img[i].mean()
        disp_r[i] = img[i].var()

    avg_c = np.empty(img.shape[1])
    disp_c = np.empty(img.shape[1])
    for i in range(img.shape[1]):
        avg_c[i] = img[:, i].mean()
        disp_c[i] = img[:, i].var()

    plt.figure()
    plt.imshow(img, cmap="Greys")
    # plt.show()
    IO.plot_functions([(None, avg_r), (None, disp_r), (None, avg_c),
                       (None, disp_c)],
                      ["avg rows", "disp rows", "avg cols", "disp cols"])
    print(mi_col, ma_col)

    plt.figure()
    plt.plot(m.hist(img, 255))
    plt.figure()
    plt.hist(img.flatten(), 255)
    plt.show()
コード例 #6
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task4():
    img = IO.read_image("photo1.jpg", r".\data")
    img = to_one_chanel(img)
    mul = 1.7
    img2 = reS.resize_next_neigbour(img, mul)
    img3 = reS.resize_bilinear_interpolation(img, mul)
    IO.show_images([img, img2, img3], types="sizing")
    plt.figure(figsize=(img.shape[1] / DPI, img.shape[0] / DPI))
    plt.imshow(img,
               aspect="auto",
               interpolation="none",
               vmin=0,
               vmax=255,
               cmap='gist_gray')
    plt.figure(figsize=(img2.shape[1] / DPI, img2.shape[0] / DPI))
    plt.imshow(img2,
               aspect="auto",
               interpolation="none",
               vmin=0,
               vmax=255,
               cmap='gist_gray')
    plt.figure(figsize=(img3.shape[1] / DPI, img3.shape[0] / DPI))
    plt.imshow(img3,
               aspect="auto",
               interpolation="none",
               vmin=0,
               vmax=255,
               cmap='gist_gray')
    plt.show()
コード例 #7
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task8(not_show=True):
    """
    model_.jpg
    ???????????  - изображение
    1. ????????? ??????????? гистограмма
    2. ????????? ???????? - ?????? ?? ???? ??????? ? ????????? ??????(???????? ? ????)
    случаный шум - идем по строкам и делам + какой то рандом * S . потом скайл
    3. ??????? ???? ? ?????
    шум - соль перец
    4. зашумит спайками (для каждой строки + и -)
    впрос про scale - как его делать - обрезая или /max ?
    """
    img = IO.read_image("data/MODEL.jpg")
    plt.imshow(img, cmap="gray")
    plt.show()
    if not not_show:
        plt.figure()
        plt.imshow(img, cmap="gray")
        plt.figure()
        plt.hist(img.flatten(), 255)
        plt.show()

    img_random_noise = np.zeros(img.shape)
    prob_of_empty = 0.3
    shum_len = 100
    for i in range(len(img)):
        img_random_noise[i] = img[i] + \
                              np.random.choice(
                                  [i for i in range(shum_len)],
                                  p=[prob_of_empty]+[(1-prob_of_empty)/(shum_len-1)
                                                     for _ in range(shum_len-1)],
                                  size=img.shape[1])

    img_random_noise = m.normalize(img_random_noise)

    img_SP_noise = np.zeros(img.shape)

    for i in range(len(img)):
        img_SP_noise[i] = m.add_pikes(img[i].copy(),
                                      len(img[i]) // 6,
                                      len(img[i]) // 5, 100, 200)

    img_SP_noise += img
    img_SP_noise = m.normalize(img_SP_noise)
    if not not_show:
        plt.imshow(img_random_noise, cmap="gray")
        plt.show()
        plt.imshow(img_SP_noise, cmap="gray")
        plt.show()
    return img_random_noise, img_SP_noise
コード例 #8
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task5():
    img = IO.read_image("image2.jpg", r".\data")
    # img = IO.read_image("image2.jpg", r".\data")
    # print(img.shape)
    img = to_one_chanel(img)
    i_img = GT.invert(img)
    gc_img = GT.gamma_correction(img, 0.5)
    gc_img = np.array(
        (gc_img - gc_img.min()) / (gc_img.max() - gc_img.min()) * 255,
        dtype=np.int)
    l_img = GT.logarifmic_correction(img, 1, base=1.5)
    l_img = np.array((l_img - l_img.min()) / (l_img.max() - l_img.min()) * 255,
                     dtype=np.int)
    IO.show_images([img, i_img, gc_img, l_img],
                   ["image", "invert image", "image gamma", "image logarifm"])
コード例 #9
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task2():
    """
    show resizing in + and -
    :return:
    """
    img = IO.read_image("photo1.jpg", r".\data")
    img = to_one_chanel(img)
    print_size = 3
    mul = 2.7
    img2 = reS.resize_next_neigbour(img, mul)
    plt.figure(figsize=(print_size, print_size))
    plt.imshow(img, cmap='gist_gray')
    plt.figure(figsize=(print_size * mul, print_size * mul))
    plt.imshow(img2, cmap='gist_gray')
    plt.show()
コード例 #10
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def find_face():
    """
    draws lines ower hight change periods on face
    """
    img = IO.read_image("photo1.jpg", r".\data")
    ma = img.max()
    mi = img.min()

    avg_r = np.empty(img.shape[0])
    for i in range(img.shape[0]):
        avg_r[i] = img[i].mean()

    avg_c = np.empty(img.shape[1])
    for i in range(img.shape[1]):
        avg_c[i] = img[:, i].mean()

    IO.plot_functions([(None, avg_r), (None, avg_c)], ["avg rows", "avg cols"])
    xs = []
    ys = []
    has_prev = False
    step = 5
    for i in range(step, len(avg_r) - step, step // 2):
        if abs(avg_r[i] - avg_r[i + step]) > ma / 30:
            xs.append(i + step // 2)

    step = 5
    for i in range(step, len(avg_c) - step, step // 2):
        if abs(avg_c[i] - avg_c[i + step]) > ma / 30:
            ys.append(i + step // 2)

    print(len(xs), len(ys))
    img_l = img
    for x in range(len(xs) - 1):
        for y in range(len(ys) - 1):
            print(xs[x], ys[y])
            img_l = m.draw_line(img_l, ys[y], xs[x], ys[y], xs[x + 1])
            img_l = m.draw_line(img_l, ys[y], xs[x], ys[y + 1], xs[x])
            img_l = m.draw_line(img_l, ys[y], xs[x + 1], ys[y + 1], xs[x + 1])
            img_l = m.draw_line(img_l, ys[y + 1], xs[x], ys[y + 1], xs[x + 1])

    plt.imshow(img_l)
    plt.show()
コード例 #11
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def find_edges():
    img = IO.read_image("photo1.jpg", r".\data")
    img = to_one_chanel(img)
    points = np.zeros(img.shape)

    step = 3
    for i in range(step, img.shape[0] - step):
        for j in range(step, img.shape[1] - step):
            a = img[i - step:i + step, j - step:j + step]
            a: np.ndarray = np.greater(img[i, j], a)
            if a.sum() > a.size * 0.8:
                # if  len([[1 for x in range(-step//2, step//2) if img[i,j] > img[i+x, j+y]]
                #          for y in range(-step//2, step//2)]) > step*step*0.3:
                # img[i,j] > img[i-step:i+step, j-step:j+step].mean():
                points[i, j] = img[i, j]
    print(len(points))
    plt.imshow(img, cmap='gist_gray')
    plt.figure()
    plt.imshow(points)
    plt.show()
コード例 #12
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task13():
    """
    Выделить контуры объекта MODEL (должны быть как бинарное изображение):
    ФНЧ (фильтр низких чатсот расфокусирует изображение),
    вычитаем из исходного применяем пороговое преобразование.
    ФВЧ (фильтр высоких частот к тому же
    изображению построчно или по столбцам), аналогично
    1. Попробовать с шумами
    """
    img = IO.read_image(r"data/MODEL.jpg")

    lpf = m.create_low_pass_filter(0.05, 8, 1)
    img2 = m.convolutional_2d(img, lpf)
    img3 = img - img2
    img3 = m.normalize(m.threshold_filter_2d(img3, 240))
    hpf = m.create_hight_pass_filter(0.2, 8, 1)
    img4 = m.convolutional_2d(img, hpf)
    img4 = m.normalize(m.threshold_filter_2d(img4, 100))
    IO.show_images([img, img2, img3, img4],
                   ["start", "conv res", "low filter", "hight filter"],
                   fig_name="Контур с помощью фильров")

    img_n = m.add_random_noise_2d(img)
    img_n = m.add_salt_pepper_noise_2d(img_n)
    img_n = PF.median_filter(img_n)
    img_n = PF.averaging_filter(img_n)

    lpf = m.create_low_pass_filter(0.05, 8, 1)
    img2 = m.convolutional_2d(img_n, lpf)
    img3 = img - img2
    # img3 = m.normalize(img3, 255)
    # print(img3.min(), img3.max())
    img3 = m.normalize(m.threshold_filter_2d(img3, 78))
    hpf = m.create_hight_pass_filter(0.2, 4, 1)
    img4 = m.convolutional_2d(img_n, hpf)
    # img4 = m.normalize(img4, 255)
    # print(img4.min(), img4.max())
    # img4 = m.threshold_filter_2d(img4, 0)
    IO.show_images([img_n, img2, img3, m.normalize(img4)],
                   ["start", "conv res", "low filter", "hight filter"],
                   fig_name="Контур филтрами зашумленного изображения")
コード例 #13
0
ファイル: sem2.py プロジェクト: nectostr/MetofPrExpData
def task6():
    pass
    """
    1. ??????????? ?????????
    2. ??????????


    ????????? ??????? (????? > 1), ?????? ??????? ? ?? - ?? ????????
    ?????? - ??? ?????? ?????????????... - ?????????? ?? ? 0-1 ????? ???????????? ??
    ? ??? ?????????? - ?????????? ????? ???????? ?????? ? ?? ????????????
    :return:
    """
    img = IO.read_image("image2.jpg", r".\data")
    img = to_one_chanel(img)
    print(img.shape)
    LD = m.luminance_distribution(img)
    img2 = m.apply(img, LD)
    IO.show_images([img, img2], ["image", "image vs luminance distribution"])
    bLD1 = m.back_luminance_distribution(LD)
    bLD2 = m.luminance_distribution(img2)
    IO.plot_functions([(None, LD)])
    IO.plot_functions([(None, LD), (None, bLD1)])