def testL1L2RegularizerWithScope(self): with self.test_session(): shape = [5, 5, 5] num_elem = 5 * 5 * 5 tensor = tf.constant(1.0, shape=shape) loss = losses.l1_l2_regularizer(scope='L1L2')(tensor) self.assertEqual(loss.op.name, 'L1L2/value') self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5)
def testL1L2RegularizerWithScope(self): with self.test_session(): shape = [5, 5, 5] num_elem = 5 * 5 * 5 tensor = tf.constant(1.0, shape=shape) loss = losses.l1_l2_regularizer(scope='L1L2')(tensor) self.assertEquals(loss.op.name, 'L1L2/value') self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5)
def testL1L2RegularizerWithWeights(self): with self.test_session(): shape = [5, 5, 5] num_elem = 5 * 5 * 5 tensor = tf.constant(1.0, shape=shape) weight_l1 = 0.01 weight_l2 = 0.05 loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor) self.assertEquals(loss.op.name, 'L1L2Regularizer/value') self.assertAlmostEqual(loss.eval(), num_elem * weight_l1 + num_elem * weight_l2 / 2, 5)