コード例 #1
0
def pre_training_loss(truth, pred):
    feat,pred = split_feat_pred(pred)
    d = create_index_dict(truth, pred)
    feat = create_feature_dict(feat)
    
    truthxy = tf.concat([d['truthHitAssignedX'],d['truthHitAssignedY']],axis=-1)
    
    #print('>>>>> >>> > > > > >', truthxy.shape, d['predCCoords'].shape, d['predXY'].shape, )
    
    diff = 10.*d['predCCoords'] - truthxy
    diff = d['truthNoNoise']*(0.1*d['predBeta'])*diff**2
    
    beta_med = (d['predBeta']-0.5)**2
    
    posl = (d['predXY'] - truthxy)**2 / 1000.
    
    loss = tf.reduce_mean(diff) + tf.reduce_mean(beta_med) + tf.reduce_mean(posl)
    tf.print('pretrain loss',loss, 'posl**2', tf.reduce_mean(posl))
    return loss
コード例 #2
0
def full_obj_cond_loss(truth, pred_in, rowsplits):
    global full_obj_cond_loss_counter
    full_obj_cond_loss_counter+=1
    start_time = time.time()
    
    if truth.shape[0] is None: 
        return tf.constant(0., tf.float32)
    
    rowsplits = tf.cast(rowsplits, tf.int64)#just for first loss evaluation from stupid keras
    
    feat,pred = split_feat_pred(pred_in)
    d = create_index_dict(truth, pred, n_ccoords=config.n_ccoords)
    feat = create_feature_dict(feat)
    #print('feat',feat.shape)
    
    #d['predBeta'] = tf.clip_by_value(d['predBeta'],1e-6,1.-1e-6)
    
    row_splits = rowsplits[ : rowsplits[-1,0],0]
    
    classes = d['truthHitAssignementIdx'][...,0]
    
    energyweights = d['truthHitAssignedEnergies']
    energyweights = tf.math.log(0.1 * energyweights + 1.)
    
    if not config.use_energy_weights:
        energyweights *= 0.
    energyweights += 1.
    
    #just to mitigate the biased sample
    energyweights = tf.where(d['truthHitAssignedEnergies']>10.,energyweights+0.1, energyweights*(d['truthHitAssignedEnergies']/10.+0.1))
    if not config.downweight_low_energy:
        energyweights = tf.zeros_like(energyweights) + 1.
        if config.use_energy_weights:
            energyweights = tf.math.log(0.1 * d['truthHitAssignedEnergies'] + 1.)
    
    
    #also using log now, scale back in evaluation #
    den_offset = config.energy_den_offset
    if config.log_energy:
        raise ValueError("loss config log_energy is not supported anymore. Please use the 'ExpMinusOne' layer within the model instead to scale the output.")
    
    energy_diff = (d['predEnergy'] - d['truthHitAssignedEnergies']) 
    
    scaled_true_energy = d['truthHitAssignedEnergies']
    if config.rel_energy_mse:
        scaled_true_energy *= scaled_true_energy
    sqrt_true_en = tf.sqrt(scaled_true_energy + 1e-6)
    energy_loss = energy_diff/(sqrt_true_en+den_offset)
    
    if config.huber_energy_scale>0:
        huber_scale = config.huber_energy_scale * sqrt_true_en
        energy_loss = huber(energy_loss, huber_scale)
    else:
        energy_loss = energy_loss**2
    
    pos_offs = None
    payload_loss = None
    
    xdiff = d['predX']+feat['recHitX']  -   d['truthHitAssignedX']
    ydiff = d['predY']+feat['recHitY']  -   d['truthHitAssignedY']
    pos_offs = tf.reduce_sum(tf.concat( [xdiff,  ydiff],axis=-1)**2, axis=-1, keepdims=True)
    
    tdiff = d['predT']  -   d['truthHitAssignedT']
    #print("d['truthHitAssignedT']", tf.reduce_mean(d['truthHitAssignedT']), tdiff)
    tdiff = (1e6 * tdiff)**2
    # self.timing_loss_weight
    
    payload_loss = tf.concat([config.energy_loss_weight * energy_loss ,
                          config.position_loss_weight * pos_offs,
                          config.timing_loss_weight * tdiff], axis=-1)
    
    
    
    
    if not config.use_spectators:
        d['truthIsSpectator'] = tf.zeros_like(d['truthIsSpectator'])
    
    
    attractive_loss, rep_loss, noise_loss, min_beta_loss, payload_loss_full, too_much_beta_loss = oc_loss(
        
        x = d['predCCoords'],
        beta = d['predBeta'], 
        truth_indices = d['truthHitAssignementIdx'], 
        row_splits=row_splits, 
        is_spectator = d['truthIsSpectator'], 
        payload_loss=payload_loss,
        Q_MIN=config.q_min, 
        S_B=config.s_b,
        energyweights=energyweights,
        use_average_cc_pos=config.use_average_cc_pos,
        payload_rel_threshold=config.payload_rel_threshold,
        cont_beta_loss=config.cont_beta_loss
        )
    
    
    attractive_loss *= config.potential_scaling
    rep_loss *= config.potential_scaling * config.repulsion_scaling
    min_beta_loss *= config.beta_loss_scale
    noise_loss *= config.noise_scaler
    too_much_beta_loss *= config.too_much_beta_scale
    
    spectator_beta_penalty = tf.constant(0.)
    if config.use_spectators:
        spectator_beta_penalty =  0.1 * spectator_penalty(d,row_splits)
        spectator_beta_penalty = tf.where(tf.math.is_nan(spectator_beta_penalty),0,spectator_beta_penalty)
    
    #attractive_loss = tf.where(tf.math.is_nan(attractive_loss),0,attractive_loss)
    #rep_loss = tf.where(tf.math.is_nan(rep_loss),0,rep_loss)
    #min_beta_loss = tf.where(tf.math.is_nan(min_beta_loss),0,min_beta_loss)
    #noise_loss = tf.where(tf.math.is_nan(noise_loss),0,noise_loss)
    #payload_loss_full = tf.where(tf.math.is_nan(payload_loss_full),0,payload_loss_full)
    
    
    
    energy_loss = payload_loss_full[0]
    pos_loss = payload_loss_full[1]
    time_loss = payload_loss_full[2]
    #energy_loss *= 0.0000001
    
    # neglect energy loss almost fully
    loss = attractive_loss + rep_loss +  min_beta_loss +  noise_loss  + energy_loss + time_loss + pos_loss + spectator_beta_penalty + too_much_beta_loss
    
    loss = tf.debugging.check_numerics(loss,"loss has nan")

    
    if config.pre_train:
         preloss = pre_training_loss(truth,pred_in)
         loss /= 10.
         loss += preloss
         
    print('call ',full_obj_cond_loss_counter)
    print('loss',loss.numpy(), 
          'attractive_loss',attractive_loss.numpy(),
          'rep_loss', rep_loss.numpy(), 
          'min_beta_loss', min_beta_loss.numpy(), 
          'noise_loss' , noise_loss.numpy(),
          'energy_loss', energy_loss.numpy(), 
          'pos_loss', pos_loss.numpy(), 
          'time_loss', time_loss.numpy(), 
          'spectator_beta_penalty', spectator_beta_penalty.numpy(), 
          'too_much_beta_loss', too_much_beta_loss.numpy())
    
    
    print('time for this loss eval',int((time.time()-start_time)*1000),'ms')
    global g_time
    print('time for total batch',int((time.time()-g_time)*1000),'ms')
    g_time=time.time()
    
    return loss
コード例 #3
0
ファイル: quickPredict.py プロジェクト: shahrukhqasim/HGCalML
pred = predicted[0]
feat = td.transferFeatureListToNumpy()
rs = feat[1]
feat = feat[0]
#weights = td.transferWeightListToNumpy()
truth = td.transferTruthListToNumpy()[0]
td.clear()

print(feat.shape)
print(truth.shape)

fig = plt.figure(figsize=(10, 4))
ax = [fig.add_subplot(1, 2, 1, projection='3d'), fig.add_subplot(1, 2, 2)]

data = create_index_dict(truth, pred, usetf=False)
feats = create_feature_dict(feat)

make_cluster_coordinates_plot(
    plt,
    ax[1],
    data['truthHitAssignementIdx'],  #[ V ]
    data['predBeta'],  #[ V ]
    data['predCCoords'])

make_original_truth_shower_plot(plt, ax[0], data['truthHitAssignementIdx'],
                                feats['recHitEnergy'], feats['recHitX'],
                                feats['recHitY'], feats['recHitZ'])

plt.tight_layout()
fig.savefig("event_" + args.e + ".pdf")
plt.close()
コード例 #4
0
    def _make_plot(self, counter, feat, predicted, truth):

        # make sure it gets reloaded in the fork
        # doesn't really seem to help though
        # from importlib import reload
        # global matplotlib
        # matplotlib=reload(matplotlib)
        # matplotlib.use('Agg')
        # import matplotlib.pyplot as plt
        # import matplotlib.gridspec as gridspec

        # exception handling is weird for keras fit right now... explicitely print exceptions at the end
        try:
            pred = predicted[0]
            feat = feat[0]  # remove row splits
            truth = truth[0]  # remove row splits, anyway one event

            _, pred = split_feat_pred(pred)
            data = create_index_dict(truth,
                                     pred,
                                     usetf=False,
                                     n_ccoords=self.n_ccoords)
            feats = create_feature_dict(feat)

            fig = plt.figure(figsize=(10, 8))
            ax = None
            if self.n_ccoords == 2:
                ax = [
                    fig.add_subplot(self.gs[0, 0], projection='3d'),
                    fig.add_subplot(self.gs[0, 1]),
                    fig.add_subplot(self.gs[1, :])
                ]
            elif self.n_ccoords == 3:
                ax = [
                    fig.add_subplot(self.gs[0, 0], projection='3d'),
                    fig.add_subplot(self.gs[0, 1], projection='3d'),
                    fig.add_subplot(self.gs[1, :])
                ]

            data['predBeta'] = np.clip(data['predBeta'], 1e-6, 1. - 1e-6)

            seed = truth.shape[0]
            if self.cycle_colors:
                seed += counter

            cmap = createRandomizedColors('jet', seed=seed)

            identified = make_cluster_coordinates_plot(
                plt,
                ax[1],
                data['truthHitAssignementIdx'],  # [ V  x 1] or [ V ]
                data['predBeta'],  # [ V  x 1] or [ V ]
                data['predCCoords'],
                beta_threshold=0.5,
                distance_threshold=0.75,
                beta_plot_threshold=0.01,
                cmap=cmap)

            make_original_truth_shower_plot(plt,
                                            ax[0],
                                            data['truthHitAssignementIdx'],
                                            feats['recHitEnergy'],
                                            feats['recHitX'],
                                            feats['recHitY'],
                                            feats['recHitZ'],
                                            cmap=cmap,
                                            predBeta=data['predBeta'])

            angle_in = 10. * counter + 60.
            while angle_in >= 360:
                angle_in -= 360
            while angle_in <= -360:
                angle_in -= 360
            ax[0].view_init(30, angle_in)
            if self.n_ccoords == 3:
                ax[1].view_init(30, angle_in)

            predEnergy = data['predEnergy']
            if self.log_energy:
                predEnergy = np.exp(predEnergy) - 1

            def calc_eta(x, y, z):
                rsq = np.sqrt(x**2 + y**2)
                return -1 * np.sign(z) * np.log(rsq / np.abs(z + 1e-3) / 2.)

            def calc_phi(x, y):
                return np.arctan2(x, y)

            predEta = calc_eta(data['predX'] + feats['recHitX'],
                               data['predY'] + feats['recHitY'],
                               np.sign(feats['recHitZ']) * 322.1)
            predPhi = calc_phi(data['predX'] + feats['recHitX'],
                               data['predY'] + feats['recHitY'])

            trueEta = calc_eta(data['truthHitAssignedX'],
                               data['truthHitAssignedY'] + 1e-3,
                               data['truthHitAssignedZ'] + 1e-3)
            truePhi = calc_phi(data['truthHitAssignedX'],
                               data['truthHitAssignedY'] + 1e-3)

            make_eta_phi_projection_truth_plot(
                plt,
                ax[2],
                data['truthHitAssignementIdx'],
                feats['recHitEnergy'],
                calc_eta(feats['recHitX'], feats['recHitY'], feats['recHitZ']),
                calc_phi(feats['recHitX'], feats['recHitY']),
                predEta,  # data['predEta']+feats['recHitEta'],
                predPhi,  # data['predPhi']+feats['recHitRelPhi'],
                trueEta,
                truePhi,
                data['truthHitAssignedEnergies'],
                data['predBeta'],
                data['predCCoords'],
                cmap=cmap,
                identified=identified,
                predEnergy=predEnergy)

            plt.tight_layout()
            fig.savefig(self.outputfile + str(self.keep_counter) + ".pdf")

            if self.publish is not None:
                temp_name = next(tempfile._get_candidate_names())
                temp_name = self.outputfile + temp_name + '.png'
                fig.savefig(temp_name)
                cpstring = 'cp -f '
                if "@" in self.publish:
                    cpstring = 'scp '
                os.system(cpstring + temp_name + ' ' + self.publish +
                          '.png > /dev/null')
                os.system('rm -f ' + temp_name)

            fig.clear()
            plt.close(fig)
            plt.clf()
            plt.cla()
            plt.close()

        except Exception as e:
            print(e)
            raise e
コード例 #5
0
    def _make_plot(self, counter, feat, predicted, truth):

        #exception handling is weird for keras fit right now... explicitely print exceptions at the end
        try:
            pred = predicted[0]
            feat = feat[0]  #remove row splits
            truth = truth[0]  #remove row splits, anyway one event

            fig = plt.figure(figsize=(10, 8))
            ax = [
                fig.add_subplot(self.gs[0, 0], projection='3d'),
                fig.add_subplot(self.gs[0, 1], projection='3d'),
                fig.add_subplot(self.gs[1, 0], projection='3d'),
                fig.add_subplot(self.gs[1, 1], projection='3d')
            ]

            _, pred = split_feat_pred(pred)
            data = create_index_dict(truth, pred, usetf=False)
            feats = create_feature_dict(feat)

            seed = truth.shape[0]
            if self.cycle_colors:
                seed += counter

            cmap = createRandomizedColors('jet', seed=seed)

            make_original_truth_shower_plot(plt,
                                            ax[0],
                                            data['truthHitAssignementIdx'],
                                            feats['recHitEnergy'],
                                            feats['recHitX'],
                                            feats['recHitY'],
                                            feats['recHitZ'],
                                            cmap=cmap)

            angle_in = counter + 60.
            while angle_in >= 360:
                angle_in -= 360
            while angle_in <= -360:
                angle_in -= 360
            ax[0].view_init(30, angle_in)

            make_original_truth_shower_plot(plt,
                                            ax[1],
                                            data['truthHitAssignementIdx'],
                                            feats['recHitEnergy'],
                                            pred[:, self.coordinates_a[0]],
                                            pred[:, self.coordinates_a[1]],
                                            pred[:, self.coordinates_a[2]],
                                            cmap=cmap)

            make_original_truth_shower_plot(plt,
                                            ax[2],
                                            data['truthHitAssignementIdx'],
                                            feats['recHitEnergy'],
                                            pred[:, self.coordinates_b[0]],
                                            pred[:, self.coordinates_b[1]],
                                            pred[:, self.coordinates_b[2]],
                                            cmap=cmap)

            make_original_truth_shower_plot(plt,
                                            ax[3],
                                            data['truthHitAssignementIdx'],
                                            feats['recHitEnergy'],
                                            pred[:, self.coordinates_c[0]],
                                            pred[:, self.coordinates_c[1]],
                                            pred[:, self.coordinates_c[2]],
                                            cmap=cmap)

            plt.tight_layout()
            fig.savefig(self.outputfile + str(self.keep_counter) + ".pdf")
            fig.clear()
            plt.close(fig)
            plt.clf()
            plt.cla()
            plt.close()

        except Exception as e:
            print(e)
            raise e
コード例 #6
0
        gen.feedNumpyData())  # this is  [ [features],[truth],[None] ]

    if gen.lastBatch():
        break

    row_splits = feat[1][:, 0]

    with tf.device('/CPU:0'):
        feat, _ = ragged_constructor((feat[0], row_splits))
        truth, row_splits = ragged_constructor((truth[0], row_splits))

    for i in range(len(row_splits) - 1):
        with tf.device('/CPU:0'):
            features_s = feat[row_splits[i]:row_splits[i + 1]].numpy()
            truth_s = truth[row_splits[i]:row_splits[i + 1]].numpy()
            feature_dict = index_dicts.create_feature_dict(
                features_s)  # follow this
            truth_dict = index_dicts.create_truth_dict(
                truth_s)  # and this function to know all the keys

    print(feature_dict['recHitEnergy'].shape)  # rechit energies
    print(feature_dict['recHitEta'].shape)  # rechit eta
    print(feature_dict['recHitRelPhi'].shape)  # rechit phi
    print(feature_dict['recHitX'].shape)  # rechit X
    print(feature_dict['recHitY'].shape)  # rechit Y
    print(feature_dict['recHitZ'].shape)  # rechit Z
    print(feature_dict['recHitTime'].shape)  # rechit Z

    print(truth_dict['truthHitAssignementIdx'].shape)  # shower id
    print(truth_dict['truthRealEnergy'].shape)  # energy of the shower

    print("Going to next window\n\n")