コード例 #1
0
def f_jumping_modulo(n, m=10):
    idxs = list(range(1, n*m+1))
    # vals_mod = np.arange(0, n) % m
    vals = IndexedOrderedDict([(i, -1) for i in range(1, n*m+1)]) # {i: -1 for i in range(1, n*m+1)}

    vals_mod = [i for j in range(1, 30+1) for i in range(0, j)]

    smallest_idx = 0
    largest_idx = 0
    idx_now = 0
    # for i, v in enumerate(vals_mod[:50]):
    j = 1
    max_reached = False
    while not max_reached:
        for v in range(j-1, -1, -1):
        # for v in range(0, j):
            if v > idx_now:
                idx_now += v
            else:
                idx_now -= v
            if idx_now >= len(idxs):
                max_reached = True
                break
            idx = idxs.pop(idx_now)
            vals[idx] = v
            
            print("idx_now: {}, idx: {}, v: {}".format(idx_now, idx, v))
            
            if smallest_idx < idxs[0]:
                smallest_idx = idxs[0]
            # if largest_idx < idx:
            #     largest_idx = idx
            # lst_temp = list(vals.values())[:largest_idx]
            # print("i: {}, lst_temp:\n{}".format(i, lst_temp))
        j += 1
    lst = list(vals.values())[:smallest_idx-1]
    # print("lst: {}".format(lst))
    # print("idxs: {}".format(idxs))
    # arr = np.array(lst[:smallest_idx-1]) # % m
    # arr = np.array(lst[:smallest_idx-1]) # % m

    return lst
コード例 #2
0
NIB_URL = 'https://kartverket.maplytic.no/tile/_nib/{zoom}/{x}/{y}.jpeg'
TOPO4_URL = 'https://opencache.statkart.no/gatekeeper/gk/gk.open_gmaps?layers=topo4&zoom={zoom}&x={x}&y={y}'


PROJECTS = IndexedOrderedDict([
    ('DTM50', projects.DigitalHeightModel(key='DTM50', name='Terrain model (50 m)')),
    ('DTM10', projects.DigitalHeightModel(key='DTM10', name='Terrain model (10 m)')),
    ('DTM1',  projects.DigitalHeightModel(key='DTM1',  name='Terrain model (1 m)')),
    ('DOM50', projects.DigitalHeightModel(key='DOM50', name='Object model (50 m)')),
    ('DOM10', projects.DigitalHeightModel(key='DOM10', name='Object model (10 m)')),
    ('DOM1',  projects.DigitalHeightModel(key='DOM1',  name='Object model (1 m)')),
    ('NIB',   projects.TiledImageModel(key='NIB', name='Norge i bilder', url=NIB_URL)),
    ('TOPO4', projects.TiledImageModel(key='TOPO4', name='Karverket Topo4', url=TOPO4_URL)),
])

filesystem.create_directories(project.key for project in PROJECTS.values())


class Polygon(DeclarativeBase):
    """ORM representation of a polygon."""

    __tablename__ = 'polygon'

    id = sql.Column(sql.Integer, primary_key=True)
    name = sql.Column(sql.String, nullable=False)

    # Sequence of points (counterclockwise order) making up this polygon
    # The last point must equal the first one.
    points = orm.relationship(
        'Point', order_by='Point.id', back_populates='polygon', lazy='immediate',
        cascade='save-update, merge, delete, delete-orphan',
コード例 #3
0
ファイル: mg3.py プロジェクト: Saulus/Boosting_MG
        pre_cols[headers[i_c].replace(settings.pre_prefix, "")] = i_c
    if headers[i_c].startswith(settings.post_prefix):
        post_cols[headers[i_c].replace(settings.post_prefix, "")] = i_c

if settings.debug:
    #print "......To be deleted: " + str(len(cols_to_be_deleted)) + " cols"
    print "......Index Cols " + str(len(index_cols)) + " cols"
    print "......Pre Cols " + str(len(pre_cols)) + " cols"
    print "......Post Cols " + str(len(post_cols)) + " cols"

####
#### STEP 3: add count columns, scale age by 5
####
#raw_input("Press Enter to continue...")
print utils.time() + "add count cols"
IDX_COUNT = matrix[:, index_ATC_cols.values()].sum(axis=1)
matrix = hstack([matrix, IDX_COUNT], format="csr")
headers.append("IDX_COUNT_ATC")
index_cols["COUNT_ATC"] = len(headers) - 1

IDX_COUNT = matrix[:, index_ICD_cols.values()].sum(axis=1)
matrix = hstack([matrix, IDX_COUNT], format="csr")
headers.append("IDX_COUNT_ICD")
index_cols["COUNT_ICD"] = len(headers) - 1

####
#### STEP 4: pre-calc prevalences and related mean ages
####
print utils.time() + "Start calculation Prevalences / Mean Ages"
prevalences = matrix[:, index_cols.values()].mean(
    axis=0).A1  #requires index to be 2010 (1 year)
コード例 #4
0
class GenerateComplexPictures(Exception):
    def __init__(
            self,
            modulo=10.,

            # n1_x=500,
            # scale=16,
            # scale_y=1.,
            # x_offset=8,
            # y_offset=8,
            nx=None,
            ny=None,
            max_length=None,
            x_center=None,
            y_center=None,
            delta=0.0001,
            func_str=None,
            main_folder="images/",
            root_folder=None,
            number=None):

        self.modulo = modulo
        self.delta = delta

        self.all_symbols_16 = np.array(list("0123456789ABCDEF"))
        self.all_symbols_64 = np.array(
            list(string.ascii_letters + string.digits + "-_"))

        self.file_extension_name = "_{}_{}".format(
            self.get_date_time_str(), self.get_random_string_base_16(16))

        # TODO: need a big fix!
        if nx != None and ny != None and max_length != None and x_center != None and y_center != None:
            self.nx = nx
            self.ny = ny
            self.max_length = max_length

            scale_x = max_length
            scale_y = max_length
            if nx > ny:
                scale_y = max_length * ny / nx
            else:
                scale_x = max_length * nx / ny

            self.scale_x = scale_x
            self.scale_y = scale_y

            self.x_center = x_center
            self.y_center = y_center

            self.xs1 = np.arange(
                0, self.nx
            ) / self.nx * self.scale_x - self.scale_x / 2 + self.x_center + self.delta
            self.ys1 = np.arange(
                0, self.ny
            ) / self.ny * self.scale_y - self.scale_y / 2 + self.y_center + self.delta

            self.x_min = self.x_center - self.scale_x / 2
            self.x_max = self.x_center + self.scale_x / 2
            self.y_min = self.y_center - self.scale_y / 2
            self.y_max = self.y_center + self.scale_y / 2

            # globals()["xs1"] = self.xs1
            # globals()["ys1"] = self.ys1

            # print("\nself.nx: {}".format(self.nx))
            # print("self.ny: {}".format(self.ny))

            # print("\nself.max_length: {}".format(self.max_length))
            # print("self.scale_x: {}".format(self.scale_x))
            # print("self.scale_y: {}".format(self.scale_y))
            # print("self.x_center: {}".format(self.x_center))
            # print("self.y_center: {}".format(self.y_center))

            # print("TEST!")
            # sys.exit(-10)
        else:
            raise Exception
            # self.n1_x = n1_x
            # self.scale = scale
            # self.scale_y = scale_y

            # self.x_offset = x_offset
            # self.y_offset = y_offset
            # self.n1_y = int(self.n1_x*self.scale_y)

            # self.xs1 = np.arange(0, self.n1_x)/self.n1_x*self.scale-self.x_offset+self.delta
            # self.ys1 = np.arange(0, self.n1_y)/self.n1_y*self.scale*self.scale_y-self.y_offset+self.delta

        self.ys1 = self.ys1[::-1]

        self.ys1_2d = np.zeros((self.ys1.shape[0], self.xs1.shape[0]))
        self.xs1_2d = self.ys1_2d.copy()

        self.xs1_2d[:] = self.xs1
        self.ys1_2d[:] = self.ys1.reshape((-1, 1))

        self.arr_xy_real_imag = np.vectorize(complex)(self.xs1_2d, self.ys1_2d)

        self.message = self._construct_message()
        super(GenerateComplexPictures, self).__init__(self.message)

        self.main_folder = main_folder
        if main_folder != "images/":
            main_folder += ("" if "/" == main_folder[-1] else "/")
            self.main_folder

        if root_folder == None:
            self.root_folder = ""
        else:
            self.root_folder = root_folder + ("/" if root_folder[-1] != "/"
                                              else "")

        if number != None:
            self.number = number
            self.num_str = "_{:03}".format(number)

            self.z_func_file_name = "z_func{}.txt".format(self.num_str)
            self.path_folder_images = self.main_folder + self.root_folder + "z_funcs/"
            self.path_dir_arrs_data = self.main_folder + self.root_folder + "dm_objs/"
        else:
            self.number = None
            self.num_str = ""
            self.z_func_file_name = "z_func_{}.txt".format(
                self.file_extension_name)
            self.path_folder_images = self.main_folder + "{}{}/".format(
                self.root_folder, self.file_extension_name)

            self.path_dir_arrs_data = self.path_folder_images

        if not os.path.exists(self.path_folder_images):
            os.makedirs(self.path_folder_images)

        if func_str != None:
            self.func_str = func_str

            with open(self.path_folder_images + self.z_func_file_name,
                      "w") as fout:
                fout.write(self.func_str)
        else:
            generate_generic_z_function.main(
                path_folder=self.path_folder_images,
                number=self.number,
                file_extension_name=self.file_extension_name)

            with open(self.path_folder_images + self.z_func_file_name,
                      "r") as fin:
                self.func_str = fin.read()

        print("func_str: {}".format(self.func_str))
        self.func_str_complete = "lambda z: " + self.func_str

        self.f = self.get_f()

        print("self.path_folder_images: {}".format(self.path_folder_images))
        print("self.func_str_complete: {}".format(self.func_str_complete))

        # self.num_str = ""
        # if self.number != None:
        #     self.num_str = "_{:03}".format(self.number)

    def get_random_string_base_16(self, n):
        l = np.random.randint(0, 16, (n, ))
        return "".join(self.all_symbols_16[l])

    def delete_image_folder(self):
        path_folder_images = self.path_folder_images

        print("Remove the whole folder '{}'!".format(path_folder_images))
        shutil.rmtree(path_folder_images)

    def get_random_string_base_64(self, n):
        l = np.random.randint(0, 64, (n, ))
        return "".join(self.all_symbols_64[l])

    def get_date_time_str(self):
        dt = datetime.datetime.now()
        return "Y{:04}_m{:02}_d{:02}_H{:02}_M{:02}_S{:02}_f{:06}".format(
            dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second,
            dt.microsecond)
        # return "Y{}_m{}_d{}_H{}_M{}_S{}_f{}".format(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond)
        # return "{:%Y_%m_%d_%H_%M_%S_%f}".format(datetime.datetime.now())

    def get_f(self):
        modulo = self.modulo
        f_str = self.func_str_complete

        f = eval(f_str)

        def f_temp(z):
            n_z_orig = f(z)

            length = np.abs(n_z_orig)

            # Is needed for a continous modulo calculation!
            length_mod = length % modulo
            scale = (length_mod if int(length / modulo) % 2 == 0 else modulo -
                     length_mod) / length

            return n_z_orig, scale

        return f_temp

    def calculate_arrs(self):
        print("Calculate self.arr_f and self.arr_scales")
        self.arr_f, self.arr_scales = np.vectorize(self.f)(
            self.arr_xy_real_imag)

        print("Calculate arr")
        arr_angle = np.angle(self.arr_f)
        idx = arr_angle < 0
        arr_angle[idx] = arr_angle[idx] + np.pi * 2

        print("np.min(arr_angle): {}".format(np.min(arr_angle)))
        print("np.max(arr_angle): {}".format(np.max(arr_angle)))

        arr_angle_norm = arr_angle / (np.pi * 2)
        print("np.min(arr_angle_norm): {}".format(np.min(arr_angle_norm)))
        print("np.max(arr_angle_norm): {}".format(np.max(arr_angle_norm)))

        print("Calculate abs")
        arr_abs = np.abs(self.arr_f)
        arr_abs_mod = arr_abs * self.arr_scales

        arr_abs_norm = arr_abs / np.max(arr_abs)
        arr_abs_mod_norm = arr_abs_mod / np.max(arr_abs_mod)

        print("Calculate x and y")
        f_norm_axis = lambda v: (lambda v2: v / np.max(v))(v - np.min(v))

        arr_x = self.arr_f.real
        arr_y = self.arr_f.imag
        arr_x_mod = arr_x * self.arr_scales
        arr_y_mod = arr_y * self.arr_scales

        arr_x_norm = f_norm_axis(arr_x)
        arr_y_norm = f_norm_axis(arr_y)
        arr_x_mod_norm = f_norm_axis(arr_x_mod)
        arr_y_mod_norm = f_norm_axis(arr_y_mod)

        self.arrs = IndexedOrderedDict([
            ("angle", arr_angle_norm),
            ("abs", arr_abs_norm),
            ("abs_mod", arr_abs_mod_norm),
            ("x", arr_x_norm),
            ("x_mod", arr_x_mod_norm),
            ("y", arr_y_norm),
            ("y_mod", arr_y_mod_norm),
        ])

    def calculate_rgb_pixs(self):
        print("Getting all data in pix_float array")
        shape = self.arr_xy_real_imag.shape + (3, )
        self.pixs1_dict = IndexedOrderedDict([
            ("f", np.ones(shape)),
            ("f_mod", np.ones(shape)),
            ("angle", np.ones(shape)),
            ("abs", np.ones(shape)),
            ("abs_mod", np.ones(shape)),
            ("x", np.ones(shape)),
            ("x_mod", np.ones(shape)),
            ("y", np.ones(shape)),
            ("y_mod", np.ones(shape)),
        ])

        self.pixs1_dict["f"][:, :, 0] = self.arrs["angle"]
        self.pixs1_dict["f"][:, :, 2] = self.arrs["abs"] * 1 / 3 + 2 / 3

        self.pixs1_dict["f_mod"][:, :, 0] = self.arrs["angle"]
        self.pixs1_dict["f_mod"][:, :, 2] = self.arrs["abs_mod"]

        keys = ["angle", "abs", "abs_mod", "x", "x_mod", "y", "y_mod"]
        for key in keys:
            self.pixs1_dict[key][:, :, 0] = self.arrs[key]

        hsv_to_rgb_vectorized = np.vectorize(colorsys.hsv_to_rgb)

        print("Convert hsv to rgb and convert to uint8")

        self.pixs1_dict_rgb = IndexedOrderedDict()
        for key, value in self.pixs1_dict.items():
            pix_float_rgb = np.dstack(
                hsv_to_rgb_vectorized(value[..., 0], value[..., 1], value[...,
                                                                          2]))
            self.pixs1_dict_rgb[key] = (pix_float_rgb * 255.9).astype(np.uint8)

        self.pixs1 = [v for v in self.pixs1_dict_rgb.values()]

        self.imgs_orig = [Image.fromarray(pix.copy()) for pix in self.pixs1]

    def add_coordinate_lines(self):
        print("Adding coordinates x and y if possible")
        find_x = 0.
        find_y = 0.
        rows, cols = self.pixs1[0].shape[:2]
        line_col = np.argmin((self.xs1 - find_x)**2)
        line_row = np.argmin((self.ys1 - find_y)**2)

        if not (line_row < 0 or line_row >= rows):
            for pix in self.pixs1:
                pix[:, line_col] = pix[:, line_col] ^ (0xFF, ) * 3

        if not (line_col < 0 or line_col >= cols):
            for pix in self.pixs1:
                pix[line_row, :] = pix[line_row, :] ^ (0xFF, ) * 3

    def add_side_info(self):
        print("Creating the side infos")
        # this is needed for the info on the left side of the graph!
        pix2 = np.zeros((self.pixs1_dict_rgb["f"].shape[0], 300, 3),
                        dtype=np.uint8)
        img2 = Image.fromarray(pix2)

        # get a font
        fnt = ImageFont.truetype('monofonto.ttf', 16)
        d = ImageDraw.Draw(img2)
        d.text((8, 8), "Used function:", font=fnt, fill=(255, 255, 255))

        func_str_split = [
            self.func_str_complete[30 * i:30 * (i + 1)]
            for i in range(0,
                           len(self.func_str_complete) // 30 + 1)
        ]
        for i, func_str_part in enumerate(func_str_split, 1):
            d.text((8, 8 + 24 * i),
                   func_str_part,
                   font=fnt,
                   fill=(255, 255, 255))

        font_y_next = 8 + 24 * (i + 2)
        d.text(
            (8, font_y_next),
            "x_min: {:3.02f}, x_max: {:3.02f}".format(self.x_min, self.x_max),
            font=fnt,
            fill=(255, 255, 255))
        # d.text((8, font_y_next), "x_min: {:3.02f}, x_max: {:3.02f}".format(-self.x_offset, self.scale-self.x_offset), font=fnt, fill=(255, 255, 255))

        font_y_next += 24
        d.text(
            (8, font_y_next),
            "y_min: {:3.02f}, y_max: {:3.02f}".format(self.y_min, self.y_max),
            font=fnt,
            fill=(255, 255, 255))
        # d.text((8, font_y_next), "y_min: {:3.02f}, y_max: {:3.02f}".format(-self.y_offset, self.scale*self.scale_y-self.y_offset), font=fnt, fill=(255, 255, 255))

        pix2 = np.array(img2).copy()

        font_y_next += 24

        modulo_str = "modulo: {:3.02f}".format(self.modulo)
        text_to_write_lst = [("only with f(z)", ),
                             (
                                 "only with f(z)",
                                 modulo_str,
                             ), ("only with angle", ), ("only with abs", ),
                             ("only with abs", modulo_str), ("only with x", ),
                             ("only with x", modulo_str), ("only with y", ),
                             ("only with y", modulo_str)]

        self.pixs2 = []
        for text_to_write in text_to_write_lst:
            img2_temp = img2.copy()
            d = ImageDraw.Draw(img2_temp)

            font_y_next_temp = font_y_next
            for text in text_to_write:
                d.text((8, font_y_next_temp),
                       text,
                       font=fnt,
                       fill=(255, 255, 255))
                font_y_next_temp += 24

            self.pixs2.append(np.array(img2_temp))

        self.imgs = []
        for pix2, pix1 in zip(self.pixs2, self.pixs1):
            pix3 = np.hstack((pix2, pix1))
            self.imgs.append(Image.fromarray(pix3))

    def save_all_images(self):
        self.suffixes = [
            "f", "f_mod", "angle", "abs", "abs_mod", "x", "x_mod", "y", "y_mod"
        ]

        if self.root_folder != "":
            for suffix, img in zip(self.suffixes, self.imgs_orig):
                folder_path_f_orig = self.main_folder + "" + self.root_folder + "orig_" + suffix + "/"
                if not os.path.exists(folder_path_f_orig):
                    os.makedirs(folder_path_f_orig)

                img.save(folder_path_f_orig +
                         "{}_{}.png".format(suffix, self.num_str))
                # img.save(folder_path_f_orig+"{}{}_{}_{}.png".format(suffix, self.num_str,
                #             self.get_date_time_str(),
                #             self.get_random_string_base_16(16))
                # )

            for suffix, img in zip(self.suffixes, self.imgs):
                folder_path = self.main_folder + "" + self.root_folder + "plot_" + suffix + "/"
                if not os.path.exists(folder_path):
                    os.makedirs(folder_path)

                img.save(folder_path +
                         "{}_{}.png".format(suffix, self.num_str))
                # img.save(folder_path+suffix+"{}_{}_{}.png".format(
                #         self.num_str,
                #         self.get_date_time_str(),
                #         self.get_random_string_base_16(16)
                #     )
                # )
        else:
            # print("NO root_folder!!!!")
            for suffix, img in zip(self.suffixes, self.imgs_orig):
                folder_path_f_orig = self.main_folder + "plots_originals/orig_" + suffix + "/"
                if not os.path.exists(folder_path_f_orig):
                    os.makedirs(folder_path_f_orig)

                img.save(folder_path_f_orig + "{}{}{}.png".format(
                    suffix, self.num_str, self.file_extension_name))

            for suffix, img in zip(self.suffixes, self.imgs):
                folder_path_f_orig = self.main_folder + "plots_with_side_info/orig_" + suffix + "/"
                if not os.path.exists(folder_path_f_orig):
                    os.makedirs(folder_path_f_orig)

                img.save(folder_path_f_orig + "{}{}{}.png".format(
                    suffix, self.num_str, self.file_extension_name))

            for suffix, img in zip(self.suffixes, self.imgs):
                if self.number != None:
                    suffix += "_{}".format(self.number)
                img.save(self.path_folder_images +
                         "{}{}.png".format(suffix, self.file_extension_name))

    def save_arrs_data(self):
        # if self.root_folder == "":
        if not os.path.exists(self.path_dir_arrs_data):
            os.makedirs(self.path_dir_arrs_data)
        print("self.path_dir_arrs_data: {}".format(self.path_dir_arrs_data))

        dm_obj = DotMap()

        dm_obj.func_str = self.func_str
        dm_obj.modulo = self.modulo
        dm_obj.delta = self.delta

        dm_obj.arr_xy_real_imag = self.arr_xy_real_imag
        dm_obj.arr_f = self.arr_f
        dm_obj.arr_scales = self.arr_scales

        dm_obj.nx = self.nx
        dm_obj.ny = self.ny
        dm_obj.max_length = self.max_length
        dm_obj.x_center = self.x_center
        dm_obj.y_center = self.y_center

        if self.number != None:
            self.path_file_arrs = self.path_dir_arrs_data + "dm_obj{}.pkl.gz".format(
                self.num_str)
        else:
            self.path_file_arrs = self.path_dir_arrs_data + "dm_obj{}.pkl.gz".format(
                self.file_extension_name)
        print("self.path_file_arrs: {}".format(self.path_file_arrs))
        with gzip.open(self.path_file_arrs, "wb") as fout:
            dill.dump(dm_obj, fout)

    # TODO: make it so that you can call this functions from outside too
    # with the self object! So that an extern z func array can be ploted too!
    def do_calculations(self):
        self.calculate_arrs()

        self.calculate_rgb_pixs()

        self.add_coordinate_lines()

        self.add_side_info()

        self.save_all_images()

        self.save_arrs_data()

    def save_new_z_function(self):
        func_str_complete = self.func_str_complete

        path_folder_data = "data/"
        if not os.path.exists(path_folder_data):
            os.makedirs(path_folder_data)

        path_file_data = path_folder_data + "working_z_functions.pkl.gz"
        path_file_data_txt = path_folder_data + "working_z_functions.txt"

        if not os.path.exists(path_file_data):
            data = DotMap()
            data.func_str_lst = [func_str_complete]

            with gzip.open(path_file_data, "wb") as fout:
                dill.dump(data, fout)
        else:
            with gzip.open(path_file_data, "rb") as fin:
                data = dill.load(fin)

            data.func_str_lst.append(func_str_complete)

            with open(path_file_data_txt, "w") as fout:
                for line in data.func_str_lst:
                    fout.write(line + "\n")

            with gzip.open(path_file_data, "wb") as fout:
                dill.dump(data, fout)

        print("newest founded function:\n{}".format(func_str_complete))

        # print("data.func_str_lst:\n{}".format(data.func_str_lst))
        # lst = data.func_str_lst

        # print("Amount of found functions: {}".format(len(lst)))
        # for i, func_str in enumerate(lst, 1):
        #     print("\ni: {}, func_str: {}".format(i, func_str))

    def _construct_message(self):
        return "IT WORKS!"