def test_organizations_v1(self): test_data = "A year ago, the New York Times published confidential comments about ISIS' ideology by Major General Michael K. Nagata, then U.S. Special Operations commander in the Middle East." response = organizations(test_data, version=1) self.assertTrue(isinstance(response, list)) sorted_response = sorted(response, key=lambda x: x['confidence'], reverse=True) self.assertTrue('ISIS' in sorted_response[0]['text']) test_data = [test_data] * 2 response = organizations(test_data, version=1) self.assertTrue(isinstance(response, list)) sorted_response = [sorted(arr, key=lambda x: x['confidence'], reverse=True) for arr in response] self.assertTrue('ISIS' in sorted_response[0][0]['text'])
def test_organizations(self): test_data = "A year ago, the New York Times published confidential comments about ISIS' ideology by Major General Michael K. Nagata, then U.S. Special Operations commander in the Middle East." response = organizations(test_data) self.assertTrue(isinstance(response, list)) sorted_response = sorted(response, key=lambda x: x['confidence'], reverse=True) self.assertTrue('ISIS' in sorted_response[0]['text']) test_data = [test_data] * 2 response = organizations(test_data) self.assertTrue(isinstance(response, list)) sorted_response = [sorted(arr, key=lambda x: x['confidence'], reverse=True) for arr in response] self.assertTrue('ISIS' in sorted_response[0][0]['text'])
def test_organizations_v2(self): test_data = "A year ago, the New York Times published confidential comments about ISIS ideology by Major General Michael K. Nagata, then U.S. Special Operations commander in the Middle East." response = organizations(test_data) self.assertTrue(isinstance(response, list)) sorted_response = sorted(response, key=lambda x: x["confidence"], reverse=True) self.assertTrue( "New York Times" in [result["text"] for result in sorted_response] ) test_data = [test_data] * 2 response = organizations(test_data) self.assertTrue(isinstance(response, list)) sorted_response = [ sorted(arr, key=lambda x: x["confidence"], reverse=True) for arr in response ] self.assertTrue( "New York Times" in [result["text"] for result in sorted_response[0]] )
#with open('textfile.txt', 'r') as myfile: # data = myfile.read().replace('\n', '') #print(data) import os import indicoio # reads from the file which contains the audio to speech content __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) file_contents = open(os.path.join(__location__, "textfile.txt")) text = file_contents.read() # next, feed it into the ML API indicoio.config.api_key = 'd08fbca96c4341957f0a8a0b21d08b5d' print("Political Allegiance: ") print(indicoio.political(text)) print("\n") print("Key Words: ") print(indicoio.keywords(text, version=2)) print("\n") print("Important Persons: ") print(indicoio.people(text)) print("\n") print("Significant Locations: ") print(indicoio.places(text)) print("\n") print("Relevant Organizations: ") print(indicoio.organizations(text))