コード例 #1
0
from detectron2.structures import Instances
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import (
    Visualizer,
    _create_text_labels,
    GenericMask,
    ColorMode,
    VisImage,
    random_color,
    _SMALL_OBJECT_AREA_THRESH,
)
from fvcore.common.file_io import PathManager

from indiscapes_dataset import register_dataset

register_dataset(combined_train_val=False)


class CustomVisualizer(Visualizer):
    def __init__(self,
                 img_rgb,
                 metadata=None,
                 scale=1.0,
                 instance_mode=ColorMode.IMAGE):
        """
        Args:
            img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
                the height and width of the image respectively. C is the number of
                color channels. The image is required to be in RGB format since that
                is a requirement of the Matplotlib library. The image is also expected
                to be in the range [0, 255].
コード例 #2
0
import detectron2.utils.comm as comm
from d2.detr import DetrDatasetMapper, add_detr_config
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import COCOEvaluator, verify_results
from detectron2.evaluation import DatasetEvaluators

from detectron2.solver.build import maybe_add_gradient_clipping
from hd.evaluator import HDEvaluator
from indiscapes_dataset import register_dataset
from validation_hooks import EvalHook

register_dataset(combined_train_val=True)


class Trainer(DefaultTrainer):
    """
    Extension of the Trainer class adapted to DETR.
    """
    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each builtin dataset.
        For your own dataset, you can simply create an evaluator manually in your
        script and do not have to worry about the hacky if-else logic here.
        """
        if output_folder is None: