def upload_to_ndex(self): """Upload the assembled model as CX to NDEx""" assembled_stmts = self.run_assembly() cxa = CxAssembler(assembled_stmts, network_name=self.name) cxa.make_model() cx_str = cxa.print_cx() ndex_client.update_network(cx_str, self.ndex_network)
def update_to_ndex(self): """Update assembled model as CX on NDEx, updates existing network.""" if not self.assembled_stmts: self.run_assembly() cxa = CxAssembler(self.assembled_stmts, network_name=self.name) cxa.make_model() cx_str = cxa.print_cx() ndex_client.update_network(cx_str, self.ndex_network)
def upload_cx_to_ndex(cx_str, ndex_cred): network_id = ndex_cred['network'] provenance = make_ndex_provenance(network_id) ndex_client.set_provenance(provenance, network_id, ndex_cred) try: ndex_client.update_network(cx_str, network_id, ndex_cred) except Exception as e: logger.error('NDEx network update failed') logger.exception(e)
def create_upload_model(model_name, full_name, indra_stmts, ndex_id=None): """Make and upload an EMMAA model from a list of INDRA Statements. Parameters ---------- short_name : str Short name of the model to use on S3. full_name : str Human-readable model name to use in EMMAA dashboard. indra_stmts : list of indra.statement INDRA Statements to be used to populate the EMMAA model. ndex_id : str UUID of the network corresponding to the model on NDex. If provided, the NDex network will be updated with the latest model content. If None (default), a new network will be created and the UUID stored in the model config files on S3. """ emmaa_stmts = to_emmaa_stmts(indra_stmts, datetime.datetime.now(), []) # Get updated CX content for the INDRA Statements cxa = CxAssembler(indra_stmts) cx_str = cxa.make_model() # If we don't have an NDex ID, create network and upload to Ndex if ndex_id is None: ndex_id = cxa.upload_model(private=False) print(f'NDex ID for {model_name} is {ndex_id}.') # If the NDEx ID is provided, update the existing network else: ndex_client.update_network(cx_str, ndex_id) # Create the config dictionary config_dict = {'ndex': {'network': ndex_id}, 'search_terms': []} # Create EMMAA model emmaa_model = EmmaaModel(model_name, config_dict) emmaa_model.add_statements(emmaa_stmts) # Upload model to S3 with config as YAML and JSON emmaa_model.save_to_s3() s3_client = boto3.client('s3') config_json = json.dumps(config_dict) s3_client.put_object(Body=config_json.encode('utf8'), Key='models/%s/config.json' % model_name, Bucket='emmaa') config_json = json.dumps(config_dict) s3_client.put_object(Body=config_json.encode('utf8'), Key='models/%s/config.json' % model_name, Bucket='emmaa')
username=ndex_cred['user'], password=ndex_cred['password']) gene_names = [ hgnc_client.get_hgnc_name(ag.db_refs['HGNC']) for ag in ncp.get_agents() ] """ # Get PMIDs for reading entrez_pmids = get_pmids(gene_names) network_pmids = ncp.get_pmids() pmids = list(set(entrez_pmids + network_pmids)) save_pmids_for_reading(pmids, 'dna_damage_pmids.txt') """ # Build the model prior_stmts = build_prior(gene_names, 'prior_stmts.pkl') reach_stmts = ac.load_statements('reach_stmts.pkl') stmts = ncp.statements + reach_stmts + prior_stmts stmts = run_assembly(stmts, 'unfiltered_assembled_stmts.pkl') # Filter the statements at different levels ids_cutoffs = (('4e26a4f0-9388-11e7-a10d-0ac135e8bacf', 0.90), ('527fecf7-9388-11e7-a10d-0ac135e8bacf', 0.95), ('2f0e17bc-9387-11e7-a10d-0ac135e8bacf', 0.99)) for net_id, cutoff in ids_cutoffs: stmts_filt = filter(stmts, cutoff, 'stmts_%.2f.pkl' % cutoff) cxa = assemble_cx(stmts_filt, 'dna_damage_%.2f.cx' % cutoff) cx_str = cxa.print_cx() ndex_client.update_network(cx_str, net_id, ndex_cred)