コード例 #1
0
ファイル: test_assembly.py プロジェクト: indralab/indra_world
def test_assembly_cycle():
    stmts = stmts_from_json_file(
        os.path.join(HERE, 'data', 'compositional_refinement_cycle_test.json'))
    # 874 is a refinement of -534
    pipeline = AssemblyPipeline(comp_assembly_json)
    assembled_stmts = pipeline.run(stmts)
    assert assembled_stmts[0].supported_by == [assembled_stmts[1]]
コード例 #2
0
ファイル: api.py プロジェクト: steppi/indra
    def post(self):
        """Run an assembly pipeline for a list of Statements.

        Parameters
        ----------
        statements : list[indra.statements.Statement.to_json()]
            A list of INDRA Statements to run the pipeline.

        pipeline : list[dict]
            A list of dictionaries representing steps in the pipeline. Each
            step should have a 'function' key and, if appropriate, 'args' and
            'kwargs' keys. For more documentation and examples, see
            https://indra.readthedocs.io/en/latest/modules/pipeline.html

        Returns
        -------
        statements : list[indra.statements.Statement.to_json()]
            The list of INDRA Statements resulting from running the pipeline
            on the list of input Statements.
        """
        args = request.json
        stmts = stmts_from_json(args.get('statements'))
        pipeline_steps = args.get('pipeline')
        ap = AssemblyPipeline(pipeline_steps)
        stmts_out = ap.run(stmts)
        return _return_stmts(stmts_out)
コード例 #3
0
def preprocess_statements(
    raw_statements: List[Statement],
    steps: List[Dict[str, Any]],
) -> List[Statement]:
    """Run a preprocessing pipeline on raw statements.

    Parameters
    ----------
    raw_statements :
        A list of INDRA Statements to preprocess.
    steps :
        A list of AssemblyPipeline steps that define the steps of
        preprocessing.

    Returns
    -------
    preprocessed_statements :
        A list of preprocessed INDRA Statements.
    """
    logger.info('Running preprocessing on %d statements' % len(raw_statements))
    ap = AssemblyPipeline(steps)
    preprocessed_statements = ap.run(raw_statements)
    logger.info('%d statements after preprocessing' %
                len(preprocessed_statements))
    return preprocessed_statements
コード例 #4
0
ファイル: model.py プロジェクト: kolusask/emmaa
 def run_assembly(self):
     """Run INDRA's assembly pipeline on the Statements."""
     self.eliminate_copies()
     stmts = self.get_indra_stmts()
     stnames = {s.name for s in self.search_terms}
     ap = AssemblyPipeline(self.assembly_config)
     self.assembled_stmts = ap.run(stmts, stnames=stnames)
コード例 #5
0
ファイル: model.py プロジェクト: kkaris/emmaa
 def run_assembly(self):
     """Run INDRA's assembly pipeline on the Statements."""
     from indra_world.belief import get_eidos_scorer
     from indra_world.ontology import load_world_ontology
     self.eliminate_copies()
     stmts = self.get_indra_stmts()
     stnames = {s.name for s in self.search_terms}
     ap = AssemblyPipeline(self.assembly_config['main'])
     self.assembled_stmts = ap.run(stmts, stnames=stnames)
コード例 #6
0
 def get_statements(self):
     """Return a flat list of statements with their evidences."""
     stmts = []
     for sh, stmt in deepcopy(self.stmts_by_hash).items():
         stmt.evidence = self.evs_by_stmt_hash.get(sh, [])
         stmt.belief = self.beliefs[sh]
         stmts.append(stmt)
     # TODO: add refinement edges as supports/supported_by?
     # Here we run some post-processing steps on the statements
     ap = AssemblyPipeline(steps=self.post_processing_steps)
     stmts = ap.run(stmts)
     return stmts
コード例 #7
0
ファイル: model.py プロジェクト: kkaris/emmaa
 def assemble_dynamic_pysb(self, **kwargs):
     """Assemble a version of a PySB model for dynamic simulation."""
     # First need to run regular assembly
     if not self.assembled_stmts:
         self.run_assembly()
     if 'dynamic' in self.assembly_config:
         logger.info('Assembling dynamic PySB model')
         ap = AssemblyPipeline(self.assembly_config['dynamic'])
         # Not overwrite assembled stmts
         stmts = deepcopy(self.assembled_stmts)
         new_stmts = ap.run(stmts)
         pa = PysbAssembler()
         pa.add_statements(new_stmts)
         pysb_model = pa.make_model()
         return pysb_model
     logger.info('Did not find dynamic assembly steps')
コード例 #8
0
def test_running_pipeline():
    # From json file
    ap = AssemblyPipeline.from_json_file(test_json)
    assert ap
    # AssemblyPipeline has methods for length and iteration
    assert len(ap) == 5
    for step in ap:
        assert step
    assembled_stmts = ap.run(stmts)
    assert assembled_stmts
    assert len(assembled_stmts) == 2
    # By manually adding steps
    ap2 = AssemblyPipeline()
    ap2.append(filter_no_hypothesis)
    ap2.append(map_grounding)
    ap2.append(filter_grounded_only)
    ap2.append(map_sequence)
    ap2.append(run_preassembly, return_toplevel=False)
    assembled_stmts2 = ap2.run(stmts)
    assert assembled_stmts2
    assert len(assembled_stmts2) == 2
コード例 #9
0
ファイル: model.py プロジェクト: johnbachman/emmaa
 def assemble_dynamic_pysb(self, mode='local', bucket=EMMAA_BUCKET_NAME):
     """Assemble a version of a PySB model for dynamic simulation."""
     # First need to run regular assembly
     if not self.assembled_stmts:
         self.run_assembly()
     if 'dynamic' in self.assembly_config:
         logger.info('Assembling dynamic PySB model')
         ap = AssemblyPipeline(self.assembly_config['dynamic'])
         # Not overwrite assembled stmts
         stmts = deepcopy(self.assembled_stmts)
         self.dynamic_assembled_stmts = ap.run(stmts)
         pa = PysbAssembler()
         pa.add_statements(self.dynamic_assembled_stmts)
         pysb_model = pa.make_model()
         if mode == 's3' and 'gromet' in self.export_formats:
             fname = f'gromet_{self.date_str}.json'
             pysb_to_gromet(pysb_model, self.name,
                            self.dynamic_assembled_stmts, fname)
             logger.info(f'Uploading {fname}')
             client = get_s3_client(unsigned=False)
             client.upload_file(fname, bucket,
                                f'exports/{self.name}/{fname}')
         return pysb_model
     logger.info('Did not find dynamic assembly steps')
コード例 #10
0
    def add_statements(self, stmts):
        """Add new statements for incremental assembly.

        Parameters
        ----------
        stmts : list[indra.statements.Statement]
            A list of new prepared statements to be incrementally assembled
            into the set of existing statements.

        Returns
        -------
        AssemblyDelta
            An AssemblyDelta object representing the changes to the assembly
            as a result of the new added statements.
        """
        # We fist organize statements by hash
        stmts_by_hash = defaultdict(list)
        for stmt in stmts:
            self.annotate_evidences(stmt)
            stmts_by_hash[stmt.get_hash(
                matches_fun=self.matches_fun)].append(stmt)
        stmts_by_hash = dict(stmts_by_hash)

        # We next create the new statements and new evidences data structures
        new_stmts = {}
        new_evidences = defaultdict(list)
        for sh, stmts_for_hash in stmts_by_hash.items():
            if sh not in self.stmts_by_hash:
                new_stmts[sh] = stmts_for_hash[0]
                self.stmts_by_hash[sh] = stmts_for_hash[0]
                self.evs_by_stmt_hash[sh] = []
            for stmt in stmts_for_hash:
                for ev in stmt.evidence:
                    new_evidences[sh].append(ev)
                    self.evs_by_stmt_hash[sh].append(ev)
        new_evidences = dict(new_evidences)
        # Here we run some post-processing steps on the new statements
        ap = AssemblyPipeline(steps=self.post_processing_steps)
        # NOTE: the assumption here is that the processing steps modify the
        # statement objects directly, this could be modified to return
        # statements that are then set in the hash-keyed dict
        ap.run(list(new_stmts.values()))

        # Next we extend refinements and re-calculate beliefs
        logger.info('Extending refinement filters')
        for filter in self.refinement_filters:
            filter.extend(new_stmts)
        new_refinements = set()
        logger.info('Finding refinements for new statements')
        for sh, stmt in tqdm.tqdm(new_stmts.items()):
            refinements = None
            for filter in self.refinement_filters:
                # Note that this gets less specifics
                refinements = filter.get_related(stmt, refinements)
            # We order hashes by less specific first and more specific second
            new_refinements |= {(ref, sh) for ref in refinements}
            # This expects a list of less specific hashes for the statement
            extend_refinements_graph(self.refinements_graph,
                                     stmt,
                                     list(refinements),
                                     matches_fun=self.matches_fun)
        logger.info('Getting beliefs')
        beliefs = self.get_beliefs()
        logger.info('Returning assembly delta')
        return AssemblyDelta(new_stmts,
                             new_evidences,
                             new_refinements,
                             beliefs,
                             matches_fun=self.matches_fun)
コード例 #11
0
ファイル: test_assembly.py プロジェクト: indralab/indra_world
def test_compositional_refinement_polarity_bug():
    stmts = stmts_from_json_file(
        os.path.join(HERE, 'data', 'test_missing_refinement.json'))
    pipeline = AssemblyPipeline(comp_assembly_json)
    assembled_stmts = pipeline.run(stmts)
    assert assembled_stmts[0].supported_by == [assembled_stmts[1]]