def _test_infer(self): infer_args = { '--cuda': True, '--model-class': self.args['--model-class'], '--seed': "0", '--beam-size': "2", '--max-dec-step': "50", '--beam-class': "models.beam.Beam", '--model-type': "generator", '--batch-size': 3, 'MODEL_PATH': os.path.join(self.args['--save-to']), 'TEST_SET_FILE': os.path.join(self.dataset_prefix, "test.jsonl"), 'OUTPUT_FILE': os.path.join(self.dataset_prefix, "result.json") } infer = Infer(infer_args) hypos = infer.infer() return hypos
# 数据路径 data_path = "trainPart/dataset/" trainList = './trainPart/train_data.txt' testList = './trainPart/test_data.txt' readPath = "./trainPart/dataset/IMG/" savePath = "./trainPart/dataset/IMG_Seg/" if not os.path.exists(savePath): os.mkdir(savePath) # 多少比例用作训练集 ratio = 0.8 window = ImageGrab.grab() # 获得当前屏幕,存窗口大小 imm = cv2.cvtColor(np.array(window), cv2.COLOR_RGB2BGR) # 转为opencv的BGR格式 width, height = window.size r = Infer(width, height, imm) inf = Infer(width, height, imm) inf.infer_pictures(readPath, savePath) # 只读csv文件 with open(data_path + "log.txt", 'r') as logFile: _list = logFile.readlines() # 判断图片数是否匹配 ls_imgs = glob.glob(data_path + 'IMG/*.jpg') print(len(ls_imgs)) print(len(_list)) assert len(ls_imgs) == len(_list), 'number of images does not match' if (os.path.exists(trainList)): os.remove(trainList)
from infer import Infer from config import ModelBasic, TrainBasic infer = Infer(corpus_name=TrainBasic.dataset, run_name=TrainBasic.runname, sample_num=TrainBasic.batch_size, sample_dim=ModelBasic.in_out_dim) infer.generate(0, 0)
from infer import Infer import time rect = (678, 350, 1078, 550) j = pyvjoy.VJoyDevice(1) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) [infer_program, feeded_var_names, target_var] = fluid.io.load_inference_model(dirname="./model_infer/", executor=exe) window = ImageGrab.grab() # 获得当前屏幕,存窗口大小 img = cv2.cvtColor(np.array(window), cv2.COLOR_RGB2BGR) # 转为opencv的BGR格式 width, height = window.size r = Infer(width, height, img) inf = Infer(width, height, img) segFlag = False # 是否是处理分割的图片 def control(ang, brake): if ang > 60: ang = 60 if ang < -60: ang = -60 global j x = ang / 180 + 0.5 j.data.wAxisX = int(x * 32767) j.data.wAxisY = int(brake * 32767) j.data.wAxisZ = 0
def evaluate(self, epoch, step): infer = Infer(corpus_name=self.corpus_name, run_name=self.run_name, sample_num=TrainBasic.eval_size, sample_dim=ModelBasic.in_out_dim) infer.generate(epoch, step)
args.feature_shape = tuple([int(x) for x in args.feature_shape.split(',')]) args.record_shape = tuple([int(x) for x in args.record_shape.split(',')]) task = args.__dict__['crohns_or_polyps'] if args.pytorch: trainer = PytorchTrainer(args) trainer.train() else: # if task == 'Polyps_CT': # decode_record = generate_decode_function(args.record_shape, 'image') # model = VGG if task == 'Crohns_MRI': decode_record = generate_decode_function(args.record_shape, 'axial_t2') model = ResNet3D args.__dict__['decode_record'] = decode_record if args.mode == 'train': trainer = Trainer(args, model) trainer.train() elif args.mode == 'test': infer = Infer(args, model) infer.test(os.path.join(args.base, args.test_datapath)) axial_path = '/vol/bitbucket/rh2515/MRI_Crohns/A/A36 Axial T2.nii' coords = [198, 134, 31] infer.infer(axial_path, coords, args.record_shape, args.feature_shape)
# model_path_list.append(os.path.join(directory, filename)) model_path_list.append(filename) print(model_path_list) model_path_list.sort(key=lambda x:int(x.split('_')[2])) # model_path_list.sort() for i in range(len(model_path_list)): if i < 29 or i > 49: continue if i % opts.span == opts.span-1: # if i > -1: print(model_path_list[i]) model_state = torch.load(os.path.join(directory, model_path_list[i])) Model.load_state_dict(model_state) Model.to("cuda") summary(Model, (3, 64, 64)) break dataset = Dataload(imgpath=opts.image_folder, csv_name=csv_name) with torch.no_grad(): print("infer") kld_list = Infer(Model, dataset, batch_size=opts.bs, latent_dim=opts.latent_dim, output_folder=opts.model_folder) index_of_change = linearSearch(kld_list, opts.top_K) np.save(os.path.join(opts.model_folder, 'scene_change_res' + str(i) + '.npy'), index_of_change)
import time segFlag = False # 是否是处理分割的图片 rect = (678, 350, 1078, 550) j = pyvjoy.VJoyDevice(1) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) [infer_program, feeded_var_names, target_var] = fluid.io.load_inference_model(dirname="./model_infer/", executor=exe) window = ImageGrab.grab() # 获得当前屏幕,存窗口大小 img = cv2.cvtColor(np.array(window), cv2.COLOR_RGB2BGR) # 转为opencv的BGR格式 width, height = window.size inf = Infer(width, height, img) if segFlag else None def control(ang, brake): if ang > 60: ang = 60 if ang < -60: ang = -60 global j x = ang / 180 + 0.5 j.data.wAxisX = int(x * 32767) j.data.wAxisY = int(0.2 * 32767) j.data.wAxisZ = 0 j.update()
print("Running with arguments: ") for a in args.__dict__: print(str(a) + ": " + str(args.__dict__[a])) args.attention = int(args.attention) # args.localisation = int(args.localisation) # args.mixedAttention = int(args.mixedAttention) # args.deeper = int(args.deeper) args.feature_shape = tuple([int(x) for x in args.feature_shape.split(',')]) args.record_shape = tuple([int(x) for x in args.record_shape.split(',')]) task = args.__dict__['crohns_or_polyps'] # if task == 'Polyps_CT': # decode_record = generate_decode_function(args.record_shape, 'image') # model = VGG if task == 'Crohns_MRI': decode_record = generate_decode_function(args.record_shape, 'axial_t2') model = ResNet3D args.__dict__['decode_record'] = decode_record if args.mode == 'train': trainer = Trainer(args, model) trainer.train() elif args.mode == 'test': infer = Infer(args, model) # the following are harded coded examples (change to run inference on other images) axial_path = './examples/A1 Axial T2.nii' coords = [198, 134, 31] infer.infer(axial_path, coords, args.record_shape, args.feature_shape)
import itertools config_file = json.load(open('./config.json')) num_inferences = 1 # number of iteration for each configuration for _ in range(num_inferences): pass for c in itertools.product( config_file['n_layers'], config_file['n_filters'], config_file['batch_size'], config_file['input_size'], config_file['n_classes'], config_file['kernel_size'], config_file['fc_units'], config_file['kernel_stride']): config = { 'n_layers': c[0], 'n_filters': c[1], 'batch_size': c[2], 'input_size': c[3], 'n_classes': c[4], 'kernel_size': c[5], 'fc_units': c[6], 'kernel_stride': c[7] } print(config) sl = Infer(config) sl.get_data() sl.model() sl.loss() sl.optimizer() sl.infer() del sl
#!/usr/bin/env python ''' Testing Infer on HF Support KB. ''' from infer import Infer if __name__ == "__main__": kb_topics = [topic.rstrip('\n') for topic in open('./kb.txt')] stoplist = set('for a of the and to in is are to how do can I ?'.split()) infer = Infer() infer.build(kb_topics, stoplist, update=False, num_topics=len(kb_topics)) sims = infer.infer("How do I subscribe to a ticket") print kb_topics[sims[0][0]]
num_inferences = 1 # number of iteration for each configuration store = True count = 0 for c in itertools.product(config_file['n_layers'], config_file['n_filters'], config_file['batch_size'], config_file['input_size'],config_file['n_classes'], config_file['kernel_size'],config_file['fc_units'], config_file['kernel_stride']): print('configuration', count) count += 1 for i in range(num_inferences): print(i) config = {'n_layers' : c[0], 'n_filters' : c[1], 'batch_size' : c[2], 'input_size' : c[3], 'n_classes' : c[4], 'kernel_size' : c[5], 'fc_units' : c[6], 'kernel_stride' : c[7]} print(config) sl = Infer(config) sl.get_data() sl.model() sl.loss() sl.optimizer() model_complexity = sl.infer() model_complexity['config'] = config if store: collection.insert(model_complexity) del sl
result_file_name = image_file + '.txt' with codecs.open(result_file_name, 'w', encoding='utf-8') as f: for i, image_name in enumerate(image_name_list): image_path = os.path.join(image_file, image_name) try: image = Image.open(image_path) predict_text = ocr_engine.predict(image, long_info=False) except: predict_text = '' print(image_path) print(predict_text) f.write('{}\t{}\n'.format(image_path, predict_text)) f.flush() ocr_engine = Infer('/home/huluwa/tf_crnn/model/ctc_center') if __name__ == "__main__": TEST_OCR_MODEL = False TEST_BATCH_OCR_MODEL = True if TEST_OCR_MODEL: root_dir = './data_example/test_data/xingjin' gt_file = './data_example/test_data/xingjin1' report_file = './testset_result_local.txt' start_time = time.time() test_ocr_model(root_dir, gt_file, report_file) print('total cost time is %.4f ms' % ((time.time() - start_time) * 1000)) exit() if TEST_BATCH_OCR_MODEL: root_dir = './data_example/test_data/xingjin' gt_file = './data_example/test_data/xingjin1' report_file = './testset_result_batch.txt'
FLAGS.num_classes, FLAGS.embedding_dim, len(data_processor.char2idx), FLAGS.hidden_size, FLAGS.learning_rate) elif args.model == 'bimpm': model = BIMPM() elif args.model == 'abcnn': model = ABCnn() elif args.task == "chatbot": if args.model == "seq2seq_att": word2inx = data_processor.char2idx word2inx['<GO>'] = len(word2inx) + 1 word2inx['<EOS>'] = len(word2inx) + 1 model = Seq2SeqWithAtt( FLAGS.max_len, len(word2inx), # FLAGS.vocab_size, word2inx, # FLAGS.word2inx, FLAGS.embedding_dim, FLAGS.state_size, FLAGS.num_layers, FLAGS.use_attention, FLAGS.use_teacher_forcing, FLAGS.learning_rate, FLAGS.beam_width) if args.mode == "train": trainer = Train(model, FLAGS, sess_config, field_len=field_len) trainer.train(sess, train_data, eval_data, test_data) elif args.mode == "eval": inferor = Infer(model, FLAGS, sess) inferor.infer(eval_data, field_len=field_len)