# 1: Randomly change labels to another class --------------------------------------------------------------- tf_model.update_train_x_y(X_train, Y_train_flipped) # 2: Include parameters in model.train() to be for ALL_CNN_C for now --------------------------------------- tf_model.train() # 2: Include parameters in model.train() to be for ALL_CNN_C for now -------------------------------------- flipped_results[flips_idx, random_seed_idx, 1:] = tf_model.sess.run( [tf_model.loss_no_reg, tf_model.accuracy_op], feed_dict=tf_model.all_test_feed_dict) print('Flipped loss: %.5f. Accuracy: %.3f' % (flipped_results[flips_idx, random_seed_idx, 1], flipped_results[flips_idx, random_seed_idx, 2])) train_losses = tf_model.sess.run( tf_model.indiv_loss_no_reg, feed_dict=tf_model.all_train_feed_dict) train_loo_influences = tf_model.get_loo_influences() # 3 -------------------------------------------------------------------------------------------------------------------# # # simple test for parallelization (works) # np.random.RandomState(100) # arr = np.random.randint(0, 10, size=[200000, 5]) # data = arr.tolist() # data[:5] # def howmany_within_range(row, minimum, maximum): # """Returns how many numbers lie within `maximum` and `minimum` in a given `row`""" # count = 0 # for n in row: # if minimum <= n <= maximum: # count = count + 1 # return count
# update model's training set w/mislabeled labels and re-train tf_model.update_train_x_y(X_train, Y_train_flipped) tf_model.train() # (what does this part do?) this works the same as orig_results flipped_results[flips_idx, random_seed_idx, 1:] = tf_model.sess.run( [tf_model.loss_no_reg, tf_model.accuracy_op], feed_dict=tf_model.all_test_feed_dict) print('Flipped loss: %.5f. Accuracy: %.3f' % (flipped_results[flips_idx, random_seed_idx, 1], flipped_results[flips_idx, random_seed_idx, 2])) # train_losses = tf_model.sess.run( tf_model.indiv_loss_no_reg, feed_dict=tf_model.all_train_feed_dict ) #tf_model.indiv_loss_no_reg from genericNeuralNet.py. Calculates loss for each train data? train_loo_influences = tf_model.get_loo_influences( ) # tf_model.get_loo_influences from binaryLogisticRegressioWithLBFGS.py this calculates loo influence for each train data? print(train_loo_influences.shape) print('\n') print('\n') print(train_loo_influences) print('\n') print('\n') # for checks_idx in range( num_check_vals ): #num_check_vals = 6 # ACTUAL x-axis of figure 6 np.random.seed(random_seed + 1) num_checks = int(num_train_examples / 20) * (checks_idx + 1) # print('### Flips: %s, rs: %s, checks: %s' % (num_flips, random_seed_idx, num_checks))