コード例 #1
0
 def compute_redundantinfo(self, tol=1e-6):
     '''Use provided antenna locations (in arrayinfoPath) to derive redundancy equations'''
     reds = self.compute_reds(tol=tol)
     reds = self.filter_reds(reds, bls=self.totalVisibilityId.keys(), 
             ex_ants=list(self.badAntenna), ex_ubls=[tuple(p) for p in self.badUBLpair])
     info = RedundantInfo()
     info.init_from_reds(reds, self.antennaLocation)
     return info
コード例 #2
0
ファイル: arrayinfo.py プロジェクト: JIANSHULI/omnical
 def compute_redundantinfo(self, tol=1e-6):
     '''Use provided antenna locations (in arrayinfoPath) to derive redundancy equations'''
     reds = self.compute_reds(tol=tol)
     reds = self.filter_reds(reds, bls=self.totalVisibilityId.keys(), 
             ex_ants=list(self.badAntenna), ex_ubls=[tuple(p) for p in self.badUBLpair])
     info = RedundantInfo()
     info.init_from_reds(reds, self.antennaLocation)
     return info
コード例 #3
0
 def compute_redundantinfo(self, arrayinfoPath=None, tol=1e-6): # XXX remove this legacy interface?
     '''Legacy version of compute_redundantinfo if you need subsetbls for data ordering.'''
     self.antennaLocationTolerance = tol
     if arrayinfoPath is not None: self.read_arrayinfo(arrayinfoPath)
     info = RedundantInfo()
     # exclude bad antennas
     info['subsetant'] = subsetant = np.array([i for i in xrange(self.antennaLocation.shape[0]) 
             if i not in self.badAntenna], dtype=np.int32)
     info['nAntenna'] = nAntenna = len(subsetant) # XXX maybe have C api automatically infer this
     info['antloc'] = antloc = np.array([self.antennaLocation[i] for i in subsetant], dtype=np.float32)
     ublall = self.compute_UBL(tol)
     #delete the bad ubl's
     badUBL = {}
     def dis(a1,a2): return np.linalg.norm(a1-a2)
     for a1,a2 in self.badUBLpair:
         bl = self.antennaLocation[a1] - self.antennaLocation[a2]
         for i,ubl in enumerate(ublall):
             if dis(bl,ubl) < tol or dis(bl,-ubl) < tol: badUBL[i] = None
     ubl2goodubl = {}
     def f(i,u):
         ubl2goodubl[i] = len(ubl2goodubl)
         return u
     info['ubl'] = ubl = np.array([f(i,u) for i,u in enumerate(ublall) if not badUBL.has_key(i)], dtype=np.float32)
     for k in badUBL: ubl2goodubl[k] = -1
     nUBL = ubl.shape[0] # XXX maybe have C api automatically infer this
     badubl = [ublall[i] for i in badUBL]
     #find nBaseline (include auto bls) and subsetbl
     #bl2d:  from 1d bl index to a pair of antenna numbers
     bl2d = [] # XXX cleaner way to do this?
     for i,ai in enumerate(antloc):
         for j,aj in enumerate(antloc[:i+1]):
             blij = ai - aj
             flag = False
             for bl in badubl:
                 if dis(blij,bl) < tol or dis(blij,-bl) < tol:
                     flag = True
                     break
             if not flag: bl2d.append((i,j))
     # exclude pairs that are not in totalVisibilityId
     tmp = []
     for p in bl2d:
         bl = (subsetant[p[0]],subsetant[p[1]])
         if self.totalVisibilityId_dic.has_key(bl): tmp.append(p)
         elif self.totalVisibilityId_dic.has_key(bl[::-1]): tmp.append(p[::-1])
     bl2d = np.array(tmp, dtype=np.int32)
     crossindex = np.array([i for i,p in enumerate(bl2d) if p[0] != p[1]], dtype=np.int32)
     nBaseline = len(bl2d)
     bl2d = bl2d[crossindex] # make bl2d only hold crosscorrelations
     info['nBaseline'] = len(bl2d) # XXX maybe have C api infer this
     # from a pair of good antenna index to bl index
     info['subsetbl'] = np.array([self.get_baseline([subsetant[bl[0]],subsetant[bl[1]]]) 
             for bl in bl2d], dtype=np.int32)
     #bltoubl: cross bl number to ubl index
     def findublindex(p1,p2):
         a1,a2 = subsetant[p1],subsetant[p2]
         if (a1,a2) in self.totalVisibilityUBL: return ubl2goodubl[self.totalVisibilityUBL[(a1,a2)]]
     info['bltoubl'] = bltoubl = np.array([findublindex(*p) for p in bl2d if p[0] != p[1]], dtype=np.int32)
     #reversed:   cross only bl if reversed -1, otherwise 1
     crosspair = [p for p in bl2d if p[0] != p[1]]
     reverse = []
     for k,cpk in enumerate(crosspair):
         bl = antloc[cpk[0]] - antloc[cpk[1]]
         if dis(bl,ubl[bltoubl[k]]) < tol: reverse.append(-1)
         elif dis(bl,-ubl[bltoubl[k]]) < tol: reverse.append(1)
         else : raise ValueError('bltoubl[%d] points to wrong ubl index' % (k))
     reverse = np.array(reverse, dtype=np.int32)
     info._reversed = reverse # XXX store this to remember what we did
     bl2d0 = np.where(reverse == 1, bl2d[:,0], bl2d[:,1])
     bl2d1 = np.where(reverse == 1, bl2d[:,1], bl2d[:,0])
     bl2d[:,0],bl2d[:,1] = bl2d0,bl2d1
     crosspair = [p for p in bl2d if p[0] != p[1]] # recompute crosspair for reversed indices
     info.bl2d = bl2d
     #ublcount:  for each ubl, the number of good cross bls corresponding to it
     cnt = {}
     for bl in bltoubl: cnt[bl] = cnt.get(bl,0) + 1
     info['ublcount'] = np.array([cnt[i] for i in range(nUBL)], dtype=np.int32)
     #ublindex:  //for each ubl, the set of corresponding indices of baselines in bl2d
     cnt = {}
     for i,(a1,a2) in enumerate(crosspair): cnt[bltoubl[i]] = cnt.get(bltoubl[i],[]) + [[a1,a2,i]]
     ublindex = np.concatenate([np.array(cnt[i],dtype=np.int32) for i in range(nUBL)])
     newind = np.arange(nBaseline)[crossindex] = np.arange(crossindex.size, dtype=np.int32)
     info.ublindex = newind[ublindex[:,2]]
     #bl1dmatrix: a symmetric matrix where col/row numbers index ants and entries are bl index (no auto corr)
     bl1dmatrix = (2**31-1) * np.ones((nAntenna,nAntenna),dtype=np.int32) # XXX don't like 2**31-1.  whence this number?
     for i,cp in enumerate(crosspair): bl1dmatrix[cp[1],cp[0]], bl1dmatrix[cp[0],cp[1]] = i,i
     info['bl1dmatrix'] = bl1dmatrix
     #degenM:
     a = np.array([np.append(ai,1) for ai in antloc], dtype=np.float32)
     d = np.array([np.append(ubli,0) for ubli in ubl], dtype=np.float32)
     m1 = -a.dot(la.pinv(a.T.dot(a))).dot(a.T)
     m2 = d.dot(la.pinv(a.T.dot(a))).dot(a.T)
     info['degenM'] = np.append(m1,m2,axis=0)
     #A: A matrix for logcal amplitude
     A = np.zeros((len(crosspair),nAntenna+nUBL))
     for i,cp in enumerate(crosspair): A[i,cp[0]], A[i,cp[1]], A[i,nAntenna+bltoubl[i]] = 1,1,1
     info['At'] = sps.csr_matrix(A).T
     #B: B matrix for logcal phase
     B = np.zeros((len(crosspair),nAntenna+nUBL))
     #for i,cp in enumerate(crosspair): B[i,cp[0]], B[i,cp[1]], B[i,nAntenna+bltoubl[i]] = -reverse[i],reverse[i],1
     for i,cp in enumerate(crosspair): B[i,cp[0]], B[i,cp[1]], B[i,nAntenna+bltoubl[i]] = -1,1,1
     info['Bt'] = sps.csr_matrix(B).T
     info.update()
     return info
コード例 #4
0
ファイル: arrayinfo.py プロジェクト: JIANSHULI/omnical
 def compute_redundantinfo(self, arrayinfoPath=None, tol=1e-6): # XXX remove this legacy interface?
     '''Legacy version of compute_redundantinfo if you need subsetbls for data ordering.'''
     self.antennaLocationTolerance = tol
     if arrayinfoPath is not None: self.read_arrayinfo(arrayinfoPath)
     info = RedundantInfo()
     # exclude bad antennas
     info['subsetant'] = subsetant = np.array([i for i in xrange(self.antennaLocation.shape[0]) 
             if i not in self.badAntenna], dtype=np.int32)
     info['nAntenna'] = nAntenna = len(subsetant) # XXX maybe have C api automatically infer this
     info['antloc'] = antloc = np.array([self.antennaLocation[i] for i in subsetant], dtype=np.float32)
     ublall = self.compute_UBL(tol)
     #delete the bad ubl's
     badUBL = {}
     def dis(a1,a2): return np.linalg.norm(a1-a2)
     for a1,a2 in self.badUBLpair:
         bl = self.antennaLocation[a1] - self.antennaLocation[a2]
         for i,ubl in enumerate(ublall):
             if dis(bl,ubl) < tol or dis(bl,-ubl) < tol: badUBL[i] = None
     ubl2goodubl = {}
     def f(i,u):
         ubl2goodubl[i] = len(ubl2goodubl)
         return u
     info['ubl'] = ubl = np.array([f(i,u) for i,u in enumerate(ublall) if not badUBL.has_key(i)], dtype=np.float32)
     for k in badUBL: ubl2goodubl[k] = -1
     nUBL = ubl.shape[0] # XXX maybe have C api automatically infer this
     badubl = [ublall[i] for i in badUBL]
     #find nBaseline (include auto bls) and subsetbl
     #bl2d:  from 1d bl index to a pair of antenna numbers
     bl2d = [] # XXX cleaner way to do this?
     for i,ai in enumerate(antloc):
         for j,aj in enumerate(antloc[:i+1]):
             blij = ai - aj
             flag = False
             for bl in badubl:
                 if dis(blij,bl) < tol or dis(blij,-bl) < tol:
                     flag = True
                     break
             if not flag: bl2d.append((i,j))
     # exclude pairs that are not in totalVisibilityId
     tmp = []
     for p in bl2d:
         bl = (subsetant[p[0]],subsetant[p[1]])
         if self.totalVisibilityId_dic.has_key(bl): tmp.append(p)
         elif self.totalVisibilityId_dic.has_key(bl[::-1]): tmp.append(p[::-1])
     bl2d = np.array(tmp, dtype=np.int32)
     crossindex = np.array([i for i,p in enumerate(bl2d) if p[0] != p[1]], dtype=np.int32)
     nBaseline = len(bl2d)
     bl2d = bl2d[crossindex] # make bl2d only hold crosscorrelations
     info['nBaseline'] = len(bl2d) # XXX maybe have C api infer this
     # from a pair of good antenna index to bl index
     info['subsetbl'] = np.array([self.get_baseline([subsetant[bl[0]],subsetant[bl[1]]]) 
             for bl in bl2d], dtype=np.int32)
     #bltoubl: cross bl number to ubl index
     def findublindex(p1,p2):
         a1,a2 = subsetant[p1],subsetant[p2]
         if (a1,a2) in self.totalVisibilityUBL: return ubl2goodubl[self.totalVisibilityUBL[(a1,a2)]]
     info['bltoubl'] = bltoubl = np.array([findublindex(*p) for p in bl2d if p[0] != p[1]], dtype=np.int32)
     #reversed:   cross only bl if reversed -1, otherwise 1
     crosspair = [p for p in bl2d if p[0] != p[1]]
     reverse = []
     for k,cpk in enumerate(crosspair):
         bl = antloc[cpk[0]] - antloc[cpk[1]]
         if dis(bl,ubl[bltoubl[k]]) < tol: reverse.append(-1)
         elif dis(bl,-ubl[bltoubl[k]]) < tol: reverse.append(1)
         else : raise ValueError('bltoubl[%d] points to wrong ubl index' % (k))
     reverse = np.array(reverse, dtype=np.int32)
     info._reversed = reverse # XXX store this to remember what we did
     bl2d0 = np.where(reverse == 1, bl2d[:,0], bl2d[:,1])
     bl2d1 = np.where(reverse == 1, bl2d[:,1], bl2d[:,0])
     bl2d[:,0],bl2d[:,1] = bl2d0,bl2d1
     crosspair = [p for p in bl2d if p[0] != p[1]] # recompute crosspair for reversed indices
     info.bl2d = bl2d
     #ublcount:  for each ubl, the number of good cross bls corresponding to it
     cnt = {}
     for bl in bltoubl: cnt[bl] = cnt.get(bl,0) + 1
     info['ublcount'] = np.array([cnt[i] for i in range(nUBL)], dtype=np.int32)
     #ublindex:  //for each ubl, the set of corresponding indices of baselines in bl2d
     cnt = {}
     for i,(a1,a2) in enumerate(crosspair): cnt[bltoubl[i]] = cnt.get(bltoubl[i],[]) + [[a1,a2,i]]
     ublindex = np.concatenate([np.array(cnt[i],dtype=np.int32) for i in range(nUBL)])
     newind = np.arange(nBaseline)[crossindex] = np.arange(crossindex.size, dtype=np.int32)
     info.ublindex = newind[ublindex[:,2]]
     #bl1dmatrix: a symmetric matrix where col/row numbers index ants and entries are bl index (no auto corr)
     bl1dmatrix = (2**31-1) * np.ones((nAntenna,nAntenna),dtype=np.int32) # XXX don't like 2**31-1.  whence this number?
     for i,cp in enumerate(crosspair): bl1dmatrix[cp[1],cp[0]], bl1dmatrix[cp[0],cp[1]] = i,i
     info['bl1dmatrix'] = bl1dmatrix
     #degenM:
     a = np.array([np.append(ai,1) for ai in antloc], dtype=np.float32)
     d = np.array([np.append(ubli,0) for ubli in ubl], dtype=np.float32)
     m1 = -a.dot(la.pinv(a.T.dot(a))).dot(a.T)
     m2 = d.dot(la.pinv(a.T.dot(a))).dot(a.T)
     info['degenM'] = np.append(m1,m2,axis=0)
     #A: A matrix for logcal amplitude
     A = np.zeros((len(crosspair),nAntenna+nUBL))
     for i,cp in enumerate(crosspair): A[i,cp[0]], A[i,cp[1]], A[i,nAntenna+bltoubl[i]] = 1,1,1
     info['At'] = sps.csr_matrix(A).T
     #B: B matrix for logcal phase
     B = np.zeros((len(crosspair),nAntenna+nUBL))
     #for i,cp in enumerate(crosspair): B[i,cp[0]], B[i,cp[1]], B[i,nAntenna+bltoubl[i]] = -reverse[i],reverse[i],1
     for i,cp in enumerate(crosspair): B[i,cp[0]], B[i,cp[1]], B[i,nAntenna+bltoubl[i]] = -1,1,1
     info['Bt'] = sps.csr_matrix(B).T
     info.update()
     return info