コード例 #1
0
ファイル: model.py プロジェクト: mozzielol/Report
	def __init__(self,type='nn'):
		self.num_classes = 10
		self.history = None
		self.epoch = 10
		self.verbose = True
		self.info = Info()

		if type == 'nn':
			self.model = Sequential()
			self.model.add(Dense(128,input_shape=(784,),activation='relu'))
			self.model.add(Dense(128,activation='relu'))
			self.model.add(Dense(self.num_classes,activation='softmax'))

		elif type == 'cnn':
			self.model = Sequential()
			self.model.add(Conv2D(32, (3, 3), padding='same', input_shape=(32, 32, 3),activation='relu'))
			#model.add(Activation('relu'))
			self.model.add(Conv2D(32,(3, 3),activation='relu'))
			#model.add(Activation('relu'))
			self.model.add(MaxPooling2D(pool_size=(2, 2)))
			#model.add(Dropout(0.25))

			self.model.add(Conv2D(64, (3, 3), padding='same',activation='relu'))
			#model.add(Activation('relu'))
			self.model.add(Conv2D(64, (3,3),activation='relu'))
			#model.add(Activation('relu'))
			self.model.add(MaxPooling2D(pool_size=(2, 2)))
			#model.add(Dropout(0.25))

			self.model.add(Flatten())
			self.model.add(Dense(512,activation='relu'))
			#model.add(Activation('relu'))
			#model.add(Dropout(0.5))
			self.model.add(Dense(self.num_classes,activation='softmax'))
コード例 #2
0
ファイル: model.py プロジェクト: mozzielol/kalman
    def __init__(self):
        self.dim = 64
        self.num_classes = 10
        self.history = None
        self.epoch = 1
        input_shape = (32, 32, 3)

        self.info = Info()

        self.model = Sequential()
        self.model.add(
            Conv2D(32, (3, 3),
                   padding='same',
                   input_shape=input_shape,
                   activation='relu'))
        self.model.add(Conv2D(32, (3, 3), activation='relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2)))
        self.model.add(Dropout(0.25))

        self.model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
        self.model.add(Conv2D(64, (3, 3), activation='relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2)))
        self.model.add(Dropout(0.25))

        self.model.add(Flatten())
        self.model.add(Dense(512, activation='relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(self.num_classes, activation='softmax'))
コード例 #3
0
	def __init__(self):
		self.dim = 64
		self.num_classes = 10
		self.history = None
		self.epoch = 10
		
		self.info = Info()
		self.count = 0

		
		self.model = Sequential()
		self.model.add(Dense(50,input_shape=(784,),activation='relu'))
		self.model.add(Dense(self.num_classes,activation='softmax'))

		self.y = self.model.output
		self.var_list = self.model.trainable_weights
コード例 #4
0
def run():
    pygame.init()
    pygame.font.init()
    set = Setting()
    screen = pygame.display.set_mode((set.width, set.height))
    info = Info(screen, set)
    pygame.display.set_caption("TicTac")

    blocks = Group()
    winpage = WinPage(screen, set, info)
    pausepage = PausePage(screen, set, info)
    pages = {}
    pages['Win'] = winpage
    pages['Pause'] = pausepage
    pages['Play'] = PlayPage(screen, set, info, blocks)
    create_board(screen, set, blocks)
    while True:
        check_event(screen, set, blocks, info, pages)
        update_screen(screen, set, blocks, info, pages)
コード例 #5
0
ファイル: model.py プロジェクト: mozzielol/Report
    def __init__(self):
        self.dim = 64
        self.num_classes = 10
        self.history = None
        self.epoch = 10

        self.info = Info()

        self.model = Sequential()
        self.model.add(Dense(50, input_shape=(784, ), activation='relu'))
        self.model.add(Dense(self.num_classes, activation='softmax'))

        self.tbCallBack = TensorBoard(log_dir='./logs/mnist_drift/kal/',
                                      histogram_freq=0,
                                      write_graph=True,
                                      write_grads=True,
                                      write_images=True,
                                      embeddings_freq=0,
                                      embeddings_layer_names=None,
                                      embeddings_metadata=None)