コード例 #1
0
def test_completion_detection():
    """
    Tests that the completeness of an embedding is accurately detected
    in a simple example.
    """
    infra = InfrastructureNetwork()

    # One source, one sink, one relay.
    # Enough transmit power so that it doesn't need to be taken into account
    nsource = infra.add_source(
        pos=(0, 0),
        # transmit power should not block anything in this example
        transmit_power_dbm=100,
    )
    _nrelay = infra.add_intermediate(pos=(0, 1), transmit_power_dbm=100)
    nsink = infra.set_sink(pos=(1, 1), transmit_power_dbm=100)

    overlay = OverlayNetwork()

    esource = ENode(overlay.add_source(), nsource)
    esink = ENode(overlay.set_sink(), nsink)

    overlay.add_link(esource.block, esink.block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(esource.block, esource.node)]
    )

    assert not embedding.is_complete()

    embedding.take_action(esource, esink, 0)

    assert embedding.is_complete()
コード例 #2
0
def test_parallel_receive_impossible():
    """
    Tests that receiving from two sender nodes at the same time is
    impossible
    """
    infra = InfrastructureNetwork()

    nsource1 = infra.add_source(pos=(0, 0), transmit_power_dbm=30)
    nsource2 = infra.add_source(pos=(3, 0), transmit_power_dbm=30)
    nsink = infra.set_sink(pos=(2, 0), transmit_power_dbm=30)

    overlay = OverlayNetwork()

    esource1 = ENode(overlay.add_source(), nsource1)
    esource2 = ENode(overlay.add_source(), nsource2)
    esink = ENode(overlay.set_sink(), nsink)

    # two incoming connections to sink
    overlay.add_link(esource1.block, esink.block)
    overlay.add_link(esource2.block, esink.block)

    embedding = PartialEmbedding(
        infra,
        overlay,
        source_mapping=[
            (esource1.block, esource1.node),
            (esource2.block, esource2.node),
        ],
    )

    # Try to send two signals to sink at the same timeslot. This should
    # fail, as either one signal should overshadow the other.
    embedding.take_action(esource1, esink, 0)
    assert not embedding.take_action(esource2, esink, 0)
コード例 #3
0
def test_trivial_possibilities():
    """
    Tests that a single reasonable option is correctly generated in a
    trivial case.
    """
    infra = InfrastructureNetwork()

    # Two nodes, 1m apart. The transmitting node has a
    # transmit_power_dbm
    # power of 30dBm (similar to a regular router) which should easily
    # cover the distance of 1m without any noise.
    source_node = infra.add_source(pos=(0, 0), transmit_power_dbm=0.1)
    infra.set_sink(pos=(1, 0), transmit_power_dbm=0)

    overlay = OverlayNetwork()
    source_block = overlay.add_source()
    sink_block = overlay.set_sink()

    overlay.add_link(source_block, sink_block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(source_block, source_node)]
    )
    # can only embed B2 into N2
    assert len(embedding.possibilities()) == 1
コード例 #4
0
def test_self_loop_does_not_interfere():
    """Tests self-loop does not interfere with other connections"""
    infra = InfrastructureNetwork()

    nso1 = infra.add_source(name="nso1", pos=(0, 0), transmit_power_dbm=30)
    nso2 = infra.add_source(name="nso2", pos=(0, 1), transmit_power_dbm=30)
    nsi = infra.set_sink(name="nsi", pos=(2, 0), transmit_power_dbm=30)

    overlay = OverlayNetwork()
    bso1 = overlay.add_source(name="bso1", datarate=5, requirement=0)
    bso2 = overlay.add_source(name="bso2", datarate=5, requirement=0)
    bin_ = overlay.add_intermediate(name="bin", datarate=5, requirement=0)
    bsi = overlay.set_sink(name="bsi", datarate=5, requirement=0)
    overlay.add_link(bso1, bin_)
    overlay.add_link(bin_, bsi)
    overlay.add_link(bso2, bsi)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(bso1, nso1), (bso2, nso2)]
    )

    eso1 = ENode(bso1, nso1)
    eso2 = ENode(bso2, nso2)
    ein = ENode(bin_, nsi)
    esi = ENode(bsi, nsi)
    assert embedding.take_action(eso1, ein, 0)
    # self loop at node esi, ts 1
    assert embedding.take_action(ein, esi, 1)
    # can still send to that node at the same ts
    assert embedding.take_action(eso2, esi, 1)
コード例 #5
0
def test_invalidating_earlier_choice_impossible():
    """
    Tests that an action that would invalidate an earlier action is
    impossible.
    """
    infra = InfrastructureNetwork()

    # Two sources, one sink. Equal distance from both sources to sink.
    # One source with moderate transmit power (but enough to cover the
    # distance, one source with excessive transmit power.
    # transmit_power_dbm
    # power of 30dBm (similar to a regular router) which should easily
    # cover the distance of 1m without any noise.
    source_node_silent = infra.add_source(
        pos=(0, 0), transmit_power_dbm=20, name="Silent"
    )
    source_node_screamer = infra.add_source(
        pos=(3, 0), transmit_power_dbm=100, name="Screamer"
    )
    node_sink = infra.set_sink(pos=(1, 3), transmit_power_dbm=0, name="Sink")

    overlay = OverlayNetwork()

    esource_silent = ENode(overlay.add_source(), source_node_silent)
    esource_screamer = ENode(overlay.add_source(), source_node_screamer)
    esink = ENode(overlay.set_sink(), node_sink)

    overlay.add_link(esource_silent.block, esink.block)
    overlay.add_link(esource_screamer.block, esink.block)

    embedding = PartialEmbedding(
        infra,
        overlay,
        source_mapping=[
            (esource_silent.block, esource_silent.node),
            (esource_screamer.block, esource_screamer.node),
        ],
    )

    action_to_be_invalidated = (esource_screamer, esink, 0)
    # make sure the action is an option in the first place
    assert action_to_be_invalidated in embedding.possibilities()

    # embed the link from the silent node to the sink
    embedding.take_action(esource_silent, esink, 0)

    # first assert that action would be valid by itself
    screamer_sinr = embedding.known_sinr(source_node_screamer, node_sink, 0)
    assert screamer_sinr > 2.0

    new_possibilities = embedding.possibilities()
    # but since the action would make the first embedding invalid (a
    # node cannot receive two signals at the same time), it should still
    # not be possible
    assert action_to_be_invalidated not in new_possibilities

    # since there are no options left in the first timeslot, there are
    # now exactly 2 (screamer -> silent as relay, screamer -> sink
    # embedded) options left in the newly created second timeslot
    assert len(new_possibilities) == 2
コード例 #6
0
def test_path_loss():
    """
    Tests that an embedding over impossible distances is recognized as
    invalid.
    """
    infra = InfrastructureNetwork()

    # Two nodes, 1km apart. The transmitting node has a transmission
    # power of 1dBm (=1.26mW). With a path loss over 1km of *at least*
    # 30dBm, less than ~-30dBm (approx. 10^-3 = 0.001mW = 1uW) arrives
    # at the target. That is a very optimistic approximation and is not
    # nearly enough to send any reasonable signal.
    source_node = infra.add_source(pos=(0, 0), transmit_power_dbm=1)
    infra.set_sink(pos=(1000, 0), transmit_power_dbm=0)

    overlay = OverlayNetwork()
    source_block = overlay.add_source()
    sink_block = overlay.set_sink()

    overlay.add_link(source_block, sink_block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(source_block, source_node)]
    )
    assert len(embedding.possibilities()) == 0
コード例 #7
0
def test_timeslots_dynamically_created():
    """Tests the dynamic creation of new timeslots as needed"""
    infra = InfrastructureNetwork()

    nso1 = infra.add_source(
        name="nso1",
        pos=(0, 0),
        # transmits so loudly that no other node can realistically
        # transmit in the same timeslot
        transmit_power_dbm=1000,
    )
    nso2 = infra.add_source(name="nso2", pos=(1, 0), transmit_power_dbm=1000)
    nsi = infra.set_sink(name="nsi", pos=(1, 1), transmit_power_dbm=1000)

    overlay = OverlayNetwork()
    bso1 = overlay.add_source(name="bso1")
    bso2 = overlay.add_source(name="bso2")
    bsi = overlay.set_sink(name="bsi")

    eso1 = ENode(bso1, nso1)
    esi = ENode(bsi, nsi)

    overlay.add_link(bso1, bsi)
    overlay.add_link(bso2, bsi)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(bso1, nso1), (bso2, nso2)]
    )

    # nothing used yet
    assert embedding.used_timeslots == 0

    # it would be possible to create a new timeslot and embed either
    # link in it (2) or go to a relay from either source (2)
    assert len(embedding.possibilities()) == 4

    # Take an action. nosurce1 will transmit so strongly that nso2
    # cannot send at the same timelot
    assert embedding.take_action(eso1, esi, 0)

    # timeslot 0 is now used
    assert embedding.used_timeslots == 1

    # New options (for creating timeslot 1) were created accordingly.
    # The second source could now still send to the other source as a
    # relay or to to the sink directly, it will just have to do it in a
    # new timeslot.
    assert len(embedding.possibilities()) == 2
コード例 #8
0
def test_broadcast_possible():
    """Tests that broadcast is possible despite SINR constraints"""
    infra = InfrastructureNetwork()

    # One source, one sink, one intermediate
    nsource = infra.add_source(pos=(0, 0), transmit_power_dbm=30)
    ninterm = infra.add_intermediate(pos=(1, 2), transmit_power_dbm=30)
    nsink = infra.set_sink(pos=(2, 0), transmit_power_dbm=30)

    overlay = OverlayNetwork()

    esource = ENode(overlay.add_source(), nsource)
    einterm = ENode(overlay.add_intermediate(), ninterm)
    esink = ENode(overlay.set_sink(), nsink)

    # fork
    overlay.add_link(esource.block, einterm.block)
    overlay.add_link(esource.block, esink.block)

    # make complete
    overlay.add_link(einterm.block, esink.block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(esource.block, esource.node)]
    )

    # Broadcast from source to sink and intermediate
    sinr_before = embedding.known_sinr(esource.node, esink.node, timeslot=0)
    assert embedding.take_action(esource, esink, 0)
    # Easiest way to test this, easy to change if internals change.
    # pylint: disable=protected-access
    power_at_sink = embedding.infra.power_at_node(
        esink.node, frozenset(embedding._nodes_sending_in[0])
    )
    assert embedding.take_action(esource, einterm, 0)

    # Make sure the broadcasting isn't counted twice
    new_power = embedding.infra.power_at_node(
        esink.node, frozenset(embedding._nodes_sending_in[0])
    )
    assert new_power == power_at_sink

    # Make sure the broadcasts do not interfere with each other
    assert sinr_before == embedding.known_sinr(
        esource.node, esink.node, timeslot=0
    )
コード例 #9
0
def test_connection_within_node_always_possible():
    """Tests that a node cannot send and receive at the same time"""
    infra = InfrastructureNetwork()

    nso = infra.add_source(name="nso", pos=(0, 0), transmit_power_dbm=30)
    nsi = infra.set_sink(name="nsi", pos=(2, 0), transmit_power_dbm=30)

    overlay = OverlayNetwork()
    bso = overlay.add_source(name="bso", datarate=0, requirement=0)
    bin_ = overlay.add_intermediate(name="bin", datarate=0, requirement=0)
    bsi = overlay.set_sink(name="bsi", datarate=0, requirement=0)
    overlay.add_link(bso, bin_)
    overlay.add_link(bin_, bsi)

    embedding = PartialEmbedding(infra, overlay, source_mapping=[(bso, nso)])

    eso = ENode(bso, nso)
    ein = ENode(bin_, nsi)
    esi = ENode(bsi, nsi)
    assert embedding.take_action(eso, ein, 0)
    # even though nsi is already receiving in ts 0
    assert embedding.take_action(ein, esi, 0)
コード例 #10
0
def test_half_duplex():
    """Tests that a node cannot send and receive at the same time"""
    infra = InfrastructureNetwork()

    nso = infra.add_source(name="nso", pos=(0, 0), transmit_power_dbm=30)
    ni = infra.add_intermediate(name="ni", pos=(1, 0), transmit_power_dbm=30)
    nsi = infra.set_sink(name="nsi", pos=(2, 0), transmit_power_dbm=30)

    overlay = OverlayNetwork()
    # links have no datarate requirements, so SINR concerns don't apply
    bso = overlay.add_source(name="bso", datarate=0)
    bsi = overlay.set_sink(name="bsi", datarate=0)
    overlay.add_link(bso, bsi)

    embedding = PartialEmbedding(infra, overlay, source_mapping=[(bso, nso)])

    eso = ENode(bso, nso)
    esi = ENode(bsi, nsi)
    ein = ENode(bso, ni, bsi)
    print(embedding.possibilities())
    assert embedding.take_action(eso, ein, 0)
    assert not embedding.take_action(ein, esi, 0)
コード例 #11
0
def test_count_timeslots_multiple_sources():
    """Tests correct counting behaviour with multiple sources"""
    infra = InfrastructureNetwork()

    nsource1 = infra.add_source(pos=(0, -1), transmit_power_dbm=30)
    nsource2 = infra.add_source(pos=(0, 1), transmit_power_dbm=30)
    nsink = infra.set_sink(pos=(1, 0), transmit_power_dbm=30)

    overlay = OverlayNetwork()

    esource1 = ENode(overlay.add_source(), nsource1)
    esource2 = ENode(overlay.add_source(), nsource2)
    esink = ENode(overlay.set_sink(), nsink)

    overlay.add_link(esource1.block, esink.block)
    overlay.add_link(esource2.block, esink.block)

    embedding = PartialEmbedding(
        infra,
        overlay,
        source_mapping=[
            (esource1.block, esource1.node),
            (esource2.block, esource2.node),
        ],
    )

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 0

    assert embedding.take_action(esource1, esink, 0)

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 1

    assert embedding.take_action(esource2, esink, 1)

    assert embedding.is_complete()
    assert embedding.used_timeslots == 2
コード例 #12
0
def test_same_connection_not_possible_twice():
    """Tests that the same connection cannot be taken twice"""
    infra = InfrastructureNetwork()

    N2 = infra.add_source(name="N2", pos=(2.3, 2.2), transmit_power_dbm=26.9)
    N3 = infra.add_intermediate(name="N3", pos=(0, 4), transmit_power_dbm=11)
    _N1 = infra.set_sink(name="N1", pos=(9.4, 9.5), transmit_power_dbm=26.1)

    overlay = OverlayNetwork()
    B2 = overlay.add_source(name="B2")
    B3 = overlay.add_intermediate(name="B3")
    B1 = overlay.set_sink(name="B1")
    overlay.add_link(B2, B1)
    overlay.add_link(B2, B3)
    overlay.add_link(B3, B1)

    embedding = PartialEmbedding(infra, overlay, source_mapping=[(B2, N2)])
    eso = ENode(B2, N2)
    ein = ENode(B2, N3, B1)

    assert embedding.take_action(eso, ein, 0)
    # this connection has already been taken
    assert not embedding.take_action(eso, ein, 1)
コード例 #13
0
def test_all_viable_options_offered():
    """
    Tests that all manually verified options are offered in a concrete
    example.
    """
    infra = InfrastructureNetwork()

    # Two sources, one sink, one intermediate, one relay
    # Enough transmit power so that it doesn't need to be taken into account
    nso1 = infra.add_source(
        pos=(0, 0),
        # transmit power should not block anything in this example
        transmit_power_dbm=100,
        name="nso1",
    )
    nso2 = infra.add_source(pos=(1, 0), transmit_power_dbm=100, name="nso2")
    _nrelay = infra.add_intermediate(
        pos=(0, 1), transmit_power_dbm=100, name="nr"
    )
    _ninterm = infra.add_intermediate(
        pos=(2, 0), transmit_power_dbm=100, name="ni"
    )
    _nsink = infra.set_sink(pos=(1, 1), transmit_power_dbm=100, name="nsi")

    overlay = OverlayNetwork()

    bso1 = overlay.add_source(name="bso1")
    bso2 = overlay.add_source(name="bso2")
    bsi = overlay.set_sink(name="bsi")
    bin_ = overlay.add_intermediate(name="bin")

    eso1 = ENode(bso1, nso1)
    eso2 = ENode(bso2, nso2)

    # source1 connects to the sink over the intermediate source2
    # connects both to the sink and to source1.
    overlay.add_link(bso1, bin_)
    overlay.add_link(bin_, bsi)
    overlay.add_link(bso2, bsi)
    overlay.add_link(bso2, bso1)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(bso1, eso1.node), (bso2, eso2.node)]
    )

    # source1 can connect to the intermediate, which could be embedded
    # in any node (5). It could also connect to any other node as a
    # relay (4) -> 9. source2 can connect to the sink (1) or the other
    # source (1). It could also connect to any other node as a relay for
    # either of its two links (2 * 3) -> 8 No timeslot is used yet, so
    # there is just one timeslot option.
    assert len(embedding.possibilities()) == 9 + 8
コード例 #14
0
def test_no_unnecessary_options():
    """
    Tests that no unnecessary connections are offered.
    """
    infra = InfrastructureNetwork()

    # Two sources, one sink. Equal distance from both sources to sink.
    # One source with moderate transmit power (but enough to cover the
    # distance, one source with excessive transmit power.
    # transmit_power_dbm
    # power of 30dBm (similar to a regular router) which should easily
    # cover the distance of 1m without any noise.
    source_node = infra.add_source(
        pos=(0, 0), transmit_power_dbm=30, name="Source"
    )
    sink_node = infra.set_sink(pos=(1, 3), transmit_power_dbm=0, name="Sink")

    overlay = OverlayNetwork()

    esource = ENode(overlay.add_source(), source_node)
    esink = ENode(overlay.set_sink(), sink_node)

    overlay.add_link(esource.block, esink.block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(esource.block, esource.node)]
    )

    assert len(embedding.possibilities()) == 1

    # embed the sink
    embedding.take_action(esource, esink, 0)

    # Now it would still be *feasible* according to add a connection to
    # the relay in the other timeslot. It shouldn't be possible however,
    # since all outgoing connections are already embedded.
    assert len(embedding.possibilities()) == 0
コード例 #15
0
def test_count_timeslots_parallel():
    """Tests correct counting behaviour with parallel connections"""
    infra = InfrastructureNetwork()

    # One source, one sink, two intermediates
    nsource = infra.add_source(
        pos=(0, 0), transmit_power_dbm=30, name="nsource"
    )
    ninterm1 = infra.add_intermediate(
        pos=(1, 2), transmit_power_dbm=30, name="ninterm1"
    )
    ninterm2 = infra.add_intermediate(
        pos=(1, -2), transmit_power_dbm=30, name="ninterm2"
    )
    nsink = infra.set_sink(pos=(2, 0), transmit_power_dbm=30, name="nsink")

    overlay = OverlayNetwork()

    esource = ENode(overlay.add_source(name="bsource"), nsource)
    einterm1 = ENode(overlay.add_intermediate(name="binterm1"), ninterm1)
    einterm2 = ENode(overlay.add_intermediate(name="binterm2"), ninterm2)
    esink = ENode(overlay.set_sink(name="bsink"), nsink)

    # fork
    overlay.add_link(esource.block, einterm1.block)
    overlay.add_link(esource.block, einterm2.block)

    overlay.add_link(einterm1.block, esink.block)
    overlay.add_link(einterm2.block, esink.block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(esource.block, esource.node)]
    )

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 0

    assert embedding.take_action(esource, einterm1, 0)
    assert embedding.take_action(esource, einterm2, 0)

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 1

    assert embedding.take_action(einterm1, esink, 1)

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 2

    assert embedding.take_action(einterm2, esink, 2)

    assert embedding.is_complete()
    assert embedding.used_timeslots == 3
コード例 #16
0
def test_count_timeslots_loop():
    """Tests reasonable counting behaviour with loops"""
    infra = InfrastructureNetwork()

    # One source, one sink, two intermediates
    nsource = infra.add_source(pos=(0, 0), transmit_power_dbm=30, name="nso")
    ninterm1 = infra.add_intermediate(
        pos=(2, 1), transmit_power_dbm=5, name="ni1"
    )
    ninterm2 = infra.add_intermediate(
        pos=(0, -1), transmit_power_dbm=5, name="ni2"
    )
    nsink = infra.set_sink(pos=(2, 0), transmit_power_dbm=30, name="nsi")

    overlay = OverlayNetwork()

    esource = ENode(overlay.add_source(name="bso"), nsource)
    einterm1 = ENode(overlay.add_intermediate(name="bi1"), ninterm1)
    einterm2 = ENode(overlay.add_intermediate(name="bi2"), ninterm2)
    esink = ENode(overlay.set_sink(name="bsi"), nsink)

    overlay.add_link(esource.block, einterm1.block)
    overlay.add_link(einterm1.block, esink.block)
    overlay.add_link(esink.block, einterm2.block)
    overlay.add_link(einterm2.block, esource.block)

    embedding = PartialEmbedding(
        infra, overlay, source_mapping=[(esource.block, esource.node)]
    )

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 0

    assert embedding.take_action(esource, einterm1, 0)

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 1

    assert embedding.take_action(einterm1, esink, 1)

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 2

    assert embedding.take_action(esink, einterm2, 2)

    assert not embedding.is_complete()
    assert embedding.used_timeslots == 3

    assert embedding.take_action(einterm2, esource, 1)

    assert embedding.is_complete()
    assert embedding.used_timeslots == 3
コード例 #17
0
def parse_infra(
    nodes_file,
    sink_source_mapping,
    positions_file,
    source_seed,
    transmit_power_dbm,
):
    """Reads an infrastructure definition in MARVELO format from csvs"""
    # read the files
    names = []
    capacities = []
    positions = []
    for (_id, name, capacity) in csv_to_list(nodes_file):
        names.append(name)
        capacities.append(float(capacity))
    for csvline in csv_to_list(positions_file, sep=";"):
        positions.append([float(pos) for pos in csvline[1:]])

    # the positions are saved in a weird format, probably a mistake when
    # saving
    positions = np.transpose(positions)
    specs = list(zip(names, capacities, positions))

    (sink_idx, source_idx) = sink_source_mapping[(source_seed, len(specs))]
    if source_idx == sink_idx:
        return None

    # make sure source is always first, sink always last
    specs[0], specs[source_idx] = specs[source_idx], specs[0]
    specs[-1], specs[sink_idx] = specs[sink_idx], specs[-1]

    # construct the infrastructure from the gathered info
    infra = InfrastructureNetwork(bandwidth=1, noise_floor_dbm=-30)
    for (name, capacity, pos) in specs[:1]:
        infra.add_source(pos, transmit_power_dbm, capacity, name)
    for (name, capacity, pos) in specs[1:-1]:
        infra.add_intermediate(pos, transmit_power_dbm, capacity, name)
    for (name, capacity, pos) in specs[-1:]:
        infra.set_sink(pos, transmit_power_dbm, capacity, name)

    return infra
コード例 #18
0
    def random_infrastructure(self, num_sources: int, rand):
        """Generates a randomized infrastructure"""
        assert num_sources > 0

        infra = InfrastructureNetwork()

        rand_node_args = lambda: {
            "pos": self.pos_dist(rand),
            "transmit_power_dbm": self.power_dist(rand),
            "capacity": self.capacity_dist(rand),
        }

        infra.set_sink(**rand_node_args())

        for _ in range(num_sources):
            infra.add_source(**rand_node_args())

        for _ in range(self.interm_nodes_dist(rand)):
            infra.add_intermediate(**rand_node_args())

        return infra