コード例 #1
0
ファイル: compress.py プロジェクト: Ctn3m0/pp2021
def extract_data(class_student, course):
    file_listing()
    for file in file_listing():
        if file == "students.dat":
            data_zip = zipfile.ZipFile('students.dat', 'r')
            data_zip.extractall(path='.')
            init.Init(class_student, course)
コード例 #2
0
def main():
    service = init.Init('s3', __file__)
    api = API()
    service.start(api,
                  backgroundTasks=[{
                      'function': api.s3.sync,
                      'interval': 60
                  }])
コード例 #3
0
 def __init__(self):
     self.init_content = init.Init()
     self.account = self.init_content.account
     self.password = self.init_content.password
     self.account_list_for_crawl = self.init_content.read_qq_for_crawl()
     self.get_cookie_instance = get_cookie.GetCookie()
     self.cookie = get_cookie.GetCookie().getCookie(self.account,
                                                    self.password)
     self.get_gtk_instance = get_gtk.GetGtk()
     self.gtk = self.get_gtk_instance.getGTK(self.cookie)
     print(self.gtk)
コード例 #4
0
ファイル: basic-vcs.py プロジェクト: harry-hov/oose_basicVCS
 def run_init(self):
     sys.stdout = self
     ## sys.stderr = self
     try:
         del (sys.modules["init"])
     except:
         ## Yeah, it's a real ugly solution...
         pass
     import init
     init.Init()
     sys.stdout = sys.__stdout__
コード例 #5
0
ファイル: lib.py プロジェクト: encryptedman/purplecoin
    def getOnlinePeer(self, peer=''):
        Initizaling = init.Init()
        Initizaling.Start()

        peers_list_connect = sqlite3.connect(config.PEERS_LIST_FILE)
        if peer == '':
            peers_list_connect.row_factory = lambda cursor, row: row[0]
            peers_list_cursor = peers_list_connect.cursor()

            for ip in peers_list_cursor.execute(
                    'SELECT `ip` FROM `peers` ORDER BY `id` DESC'):
                if not checkIp(ip):
                    continue
                print('Start - ' + ip)
                peer = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
                peer.settimeout(1)
                try:
                    peer.connect((ip, config.SERVER_PORT))
                    peers_list_connect.close()
                    print('Success - ' + ip)
                    return ip
                except socket.error:
                    print('Error - ' + ip)
                    continue

            return 'offline'
        else:
            peers_list_cursor = peers_list_connect.cursor()

            if not checkIp(peer):
                return 'Wrong peer\'s ip'
            print('Start - ' + peer)
            connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            connection.settimeout(1)
            try:
                connection.connect((peer, config.SERVER_PORT))
                peers_list_cursor.execute(
                    '''
                    INSERT INTO `peers` VALUES(NULL, :ip);
                ''', {'ip': peer})
                peers_list_connect.commit()
                peers_list_connect.close()
                print('Success - ' + peer)
                return peer
            except socket.error:
                print('Error - ' + peer)
                return 'offline'
コード例 #6
0
ファイル: myflaskapp.py プロジェクト: 40023234/cdw11
# 確定程式檔案所在目錄, 在 Windows 有最後的反斜線
_curdir = os.path.join(os.getcwd(), os.path.dirname(__file__))
# 設定在雲端與近端的資料儲存目錄
if 'OPENSHIFT_REPO_DIR' in os.environ.keys():
    # 表示程式在雲端執行
    data_dir = os.environ['OPENSHIFT_DATA_DIR']
    static_dir = os.environ['OPENSHIFT_REPO_DIR']+"/static"
    download_dir = os.environ['OPENSHIFT_DATA_DIR']+"/downloads"
else:
    # 表示程式在近端執行
    data_dir = _curdir + "/local_data/"
    static_dir = _curdir + "/static"
    download_dir = _curdir + "/local_data/downloads/"

# 利用 init.py 啟動, 建立所需的相關檔案
initobj = init.Init()

# 必須先將 download_dir 設為 static_folder, 然後才可以用於 download 方法中的 app.static_folder 的呼叫
app = Flask(__name__)
#app.config['download_dir'] = download_dir

# 使用 session 必須要設定 secret_key
# In order to use sessions you have to set a secret key
# set the secret key.  keep this really secret:
app.secret_key = 'A0Zr9@8j/3yX R~XHH!jmN]LWX/,?R@T'





コード例 #7
0
ファイル: main.py プロジェクト: RollMan/just_a_post
import dropbox
import init
import datetime

client = init.Init()
d = datetime.datetime.today()

content = raw_input("Input here: ")
date = "{:0>4}{:0>2}{:0>2}{:0>2}{:0>2}{:0>2}.txt".format(
    d.year, d.month, d.day, d.hour, d.minute, d.second)
f = open(date, "w")
print date
f.write(content)
f.close()

print date
f = open(date, "rb")
response = client.put_file(date, f)
print response
コード例 #8
0
# coding:utf-8
import io
import time
import threading
import picamera
import numpy as np
import cv2
import time
from datetime import datetime
import cognitive_face as CF
import init

init.Init(CF)
# Create a pool of image processors
done = False
lock = threading.Lock()
isSend = False
pool = []
color = (255, 255, 255)  # 白

cascade_path = "haarcascade_frontalface_default.xml"


class ImageProcessor(threading.Thread):
    def __init__(self, index):
        super(ImageProcessor, self).__init__()
        self.stream = io.BytesIO()
        self.event = threading.Event()
        self.terminated = False
        self.start()
        self.index = index
コード例 #9
0
 def __init__(self, choose="default"):
     self.end = False
     self.mining = True
     init = grid_maker.Init(choose)
     self.grid = init.grid
コード例 #10
0
ファイル: client.py プロジェクト: encryptedman/purplecoin
import init
import lib
import protocol

Initizaling = init.Init()
Initizaling.Start()
Protocol = protocol.Protocol()
Peers = lib.Peers()
User = lib.Listen_Commands()
Work_Mode = 0
Protocol_Version = 1

ip = lib.getIp()
peer = Peers.getOnlinePeer()

if peer != 'offline':
    Work_Mode = 1
    print('Online peer is ' + peer)
else:
    while True:
        peer = input(
            'Input online peer that you know or type \'offline\' to work offline: '
        )
        if peer == 'offline':
            Work_Mode = 2
            break
        elif peer == 'exit':
            lib.initExit()
        else:
            peer = Peers.getOnlinePeer(peer)
            if peer != '':
コード例 #11
0
def run():
    # initialize VGG Model and PCA
    iset = init.Init()
    # initialize neural network model
    model = networks.Network()
    model.init_model()
    # initialize global instance
    uset = users.Users()

    # store special features in memory
    # dset_special = dataset.Dataset(set.PATH_TO_SPECIAL)
    dset_special = None
    print "Dataset Loaded."
    # set normal features in memory to false
    is_normal_loaded = True
    tset_name = None
    is_reloaded = False
    m_checkpoints = 0

    while True:

        queue = db.lrange(set.REQUEST_QUEUE, set.REQUEST_START, set.REQUEST_END)
        q_uid = None
        # initialize local instance
        select = selectonly.Select()
        finalize = save.Save()
        viewer = view.View()
        retrain_v = retrainView.retrainView()
        retrain_h = retrainHeatmap.retrainHeatmap()
        heat = heatmap.Heatmap()
        t_train = train.Train()
        report_label = label.label()
        report_count = count.count()
        report_map = mapping.map()

        for q in queue:

            q = json.loads(q.decode("utf-8"))
            q_uid = q["uid"]
            target = q["target"]
            session_uid = q["uid"]
            dataSetPath = set.DATASET_DIR + q["dataset"]
            pcaPath = set.DATASET_DIR + q["pca"]
            # if specific features then set m_loaded to true
            is_normal_loaded = False if dataSetPath == set.PATH_TO_SPECIAL else True

            if target == "label":
                report_label.setData(q)

            if target == "count":
                report_count.setData(q)

            if target == "map":
                report_map.setData(q)

            if target == 'selectonly':
                select.setData(q)

            if target == 'save':
                finalize.setData(q)

            if target == 'view':
                viewer.setData(q)

            if target == 'retrainView':
                retrain_v.setData(q)

            if target == 'retrainHeatmap':
                retrain_h.setData(q)

            if target == 'heatmapAll':
                heatmaps = q["viewJSONs"]

            if target == 'heatmap':
                heat.setData(q)

            if target == 'train':
                t_train.setData(q)

            if target == 'reload':
                t_path = set.TRAININGSET_DIR + q["trainingSetName"]
                is_reloaded = True

            if target == 'reviewSave':
                q_samples = json.loads(q["samples"])

        if q_uid is not None:

            print target, " Session Start ....."

            no_uid = True
            uidx = 0

            # find current user Index
            for i in range(len(uset.users)):
                if uset.users[i]['uid'] == session_uid:
                    uidx = i
                    no_uid = False

            if no_uid:
                # set users data
                uset.addUser(session_uid)

            if is_normal_loaded:
                dset = dataset.Dataset(dataSetPath)
            else:
                dset = dset_special

            PCA = joblib.load(pcaPath)

            if target == 'selectonly':
                uset.setIter(uidx, select.iter)
                print "Predict Start ... "
                t0 = time()
                scores = model.predict_prob(dset.features)
                t1 = time()
                print "Predict took ", t1 - t0
                # Find uncertain samples
                data = select.getData(scores, dset.slideIdx, dset.slides, dset.x_centroid, dset.y_centroid)
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'view':
                slide_idx = dset.getSlideIdx(viewer.slide)
                object_num = dset.getObjNum(slide_idx)
                data_idx = dset.getDataIdx(slide_idx)
                feature_set = dset.getFeatureSet(data_idx, object_num)
                x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                y_centroid_set = dset.getYcentroidSet(data_idx, object_num)

                print "Predict Start ... "
                t0 = time()
                predictions = model.predict(feature_set)
                t1 = time()
                print "Predict took ", t1 - t0
                object_idx = load(
                    viewer.left, viewer.right, viewer.top, viewer.bottom, x_centroid_set.astype(np.float), y_centroid_set.astype(np.float)
                )
                data = {}

                for i in object_idx:
                    data[str(x_centroid_set[i][0])+'_'+str(y_centroid_set[i][0])] = str(predictions[i])

                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'heatmap':
                slide_idx = dset.getSlideIdx(heat.slide)
                object_num = dset.getObjNum(slide_idx)
                data_idx = dset.getDataIdx(slide_idx)
                feature_set = dset.getFeatureSet(data_idx, object_num)
                x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                y_centroid_set = dset.getYcentroidSet(data_idx, object_num)

                print "Predict Start ... "
                t0 = time()
                if set.IS_HEATMAP == False:
                    scores = model.predict_prob(feature_set)
                t1 = time()
                print "Predict took ", t1 - t0
                # set x and y maps
                heat.setXandYmap()
                # write heatmaps
                heat.setHeatMap(x_centroid_set, y_centroid_set, scores)
                # get heatmap data
                data = heat.getData(0)

                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'heatmapAll':
                data = []
                index = 0

                t0 = time()
                scores = model.predict_prob(dset.features)
                t1 = time()
                print "Predict took ", t1 - t0

                for h in heatmaps:

                    h['uid'] = session_uid
                    heat.setData(h)

                    slide_idx = dset.getSlideIdx(heat.slide)
                    object_num = dset.getObjNum(slide_idx)
                    data_idx = dset.getDataIdx(slide_idx)
                    # feature_set = dset.getFeatureSet(data_idx, object_num)
                    x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                    y_centroid_set = dset.getYcentroidSet(data_idx, object_num)
                    score_set = scores[data_idx: data_idx+object_num]
                    # set x and y maps
                    heat.setXandYmap()
                    # write heatmaps
                    heat.setHeatMap(x_centroid_set, y_centroid_set, score_set)
                    # get heatmap data
                    data_k = heat.getData(index)
                    data.append(data_k)
                    index += 1

                # print data
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'reload':
                # initialize augment
                agen = augments.Augments()
                # set user train samples
                # uset.setReloadedData(uidx, t_path, dset.slides)
                uset.setReloadedData(uidx, t_path)

                sample_size = len(uset.users[uidx]['samples'])

                m_checkpoints = uset.users[uidx]['samples'][sample_size-1]['checkpoints']

                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                tset_path = t_path.split('/')[-1]
                tset_name = tset_path.split('.')[0]

                print "Training ... ", len(train_labels)
                t0 = time()
                model.train_model(train_features, train_labels, tset_name)
                t1 = time()
                print "Training took ", t1 - t0

                data = {"success": 'pass'}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'label':
                # initialize augment
                agen = augments.Augments()
                # set user train samples
                uset.setReloadedData(uidx, report_label.trainSet)

                sample_size = len(uset.users[uidx]['samples'])
                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                print "Training ... ", len(train_labels)
                t0 = time()
                model.train_model(train_features, train_labels, report_label.classifier)
                t1 = time()
                print "Training took ", t1 - t0

                slide_idx = dset.getSlideIdx(report_label.slide)
                object_num = dset.getObjNum(slide_idx)
                data_idx = dset.getDataIdx(slide_idx)
                test_features = dset.getFeatureSet(data_idx, object_num)
                x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                y_centroid_set = dset.getYcentroidSet(data_idx, object_num)
                print "Testing Start ... "
                t0 = time()
                predicts = model.predict(test_features)
                t1 = time()
                print "Predict took ", t1 - t0

                inputImageFile = '/datasets/tif/'+ report_label.slide + '.svs.dzi.tif'

                bold = 512
                bold_left = report_label.left - bold
                bold_top = report_label.top - bold
                bold_bottom = report_label.bottom + bold
                bold_right = report_label.right + bold
                bold_width = report_label.width + 2*bold
                bold_height = report_label.height + 2*bold

                ts = large_image.getTileSource(inputImageFile)

                region = dict(
                    left=report_label.left, top=report_label.top,
                    width=report_label.width, height=report_label.height,
                )

                im_region = ts.getRegion(
                    region=region, format=large_image.tilesource.TILE_FORMAT_NUMPY
                )[0]

                mydb = mysql.connector.connect(
                  host=set.MYSQL_HOST,
                  user="******",
                  passwd="guest",
                  database="nuclei",
                  charset='utf8',
                  use_unicode=True
                )

                boundaryTablename = 'sregionboundaries'

                runcursor = mydb.cursor()

                query = 'SELECT centroid_x, centroid_y, boundary from ' + boundaryTablename + ' where slide="' +  report_label.slide + \
                '" AND centroid_x BETWEEN ' + str(report_label.left) + ' AND ' + str(report_label.right) + \
                ' AND centroid_y BETWEEN ' + str(report_label.top) + ' AND ' + str(report_label.bottom)

                runcursor.execute(query)

                boundarySet = runcursor.fetchall()

                # find region index from hdf5
                object_idx = load(
                    report_label.left, report_label.right, report_label.top, report_label.bottom, x_centroid_set.astype(np.float), y_centroid_set.astype(np.float)
                )

                # set an array for boundary points in a region to zero
                im_bold = np.zeros((bold_height, bold_width), dtype=np.uint8)

                for i in object_idx:
                    for j in range(len(boundarySet)):
                      x = int(boundarySet[j][0])
                      y = int(boundarySet[j][1])
                      boundaryPoints = []
                      if x == int(x_centroid_set[i, 0]) and y == int(y_centroid_set[i, 0]):
                          object = boundarySet[j][2].encode('utf-8').split(' ')
                          object_points = []
                          for p in range(len(object)-1):
                              intP = map(int, object[p].split(','))
                              intP[0] = intP[0] - report_label.left + bold
                              intP[1] = intP[1] - report_label.top + bold
                              object_points.append(intP)
                          boundaryPoints.append(np.asarray(object_points))
                          cv2.fillPoly(im_bold, boundaryPoints, 255 if predicts[i] > 0 else 128)

                im_out = im_bold[bold:bold+report_label.height, bold:bold+report_label.width]

                imsave(report_label.inFile, im_out)

                runcursor.close()
                mydb.close()

                print ("label success ", report_label.inFile)
                data = {"success": report_label.outFile}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

                uset.users = []
                uset.u_size = 0

                model = networks.Network()
                model.init_model()
                print ("label done")

            if target == 'count':
                # initialize augment
                agen = augments.Augments()
                # set user train samples
                uset.setReloadedData(uidx, report_count.trainSet)

                sample_size = len(uset.users[uidx]['samples'])
                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                print "Training ... ", len(train_labels)
                t0 = time()
                model.train_model(train_features, train_labels, report_count.classifier)
                t1 = time()
                print "Training took ", t1 - t0

                print "Testing Start ... "
                t0 = time()
                predicts = model.predict(dset.features)
                t1 = time()
                print "Predict took ", t1 - t0

                # find positive and negative numbers for each slide
                pos_num = []
                neg_num = []

                for i in range(dset.n_slides):
                    if i == len(dset.dataIdx) - 1:
                        predict = predicts[dset.dataIdx[i, 0]:]
                    else:
                        predict = predicts[dset.dataIdx[i, 0]: dset.dataIdx[i+1, 0]]
                    pos = len(predict[predict>0])
                    neg = len(predict) - pos
                    pos_num.append(pos)
                    neg_num.append(neg)

                print('>> Writing count file')
                out_file = open(report_count.inFile, 'w')

                out_file.write("Slide\t")
                out_file.write("Predicted positive (superpixels)\t")
                out_file.write("Predicted negative (superpixels)\t")                
                out_file.write("\n")

                for i in range(len(dset.slides)):
                    out_file.write("%s\t" % dset.slides[i])
                    out_file.write("%d\t" % pos_num[i])
                    out_file.write("%d\t" % neg_num[i])
                    out_file.write("\n")

                out_file.close()
                print ("count success ", report_count.inFile)
                data = {"success": report_count.outFile}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

                uset.users = []
                uset.u_size = 0

                model = networks.Network()
                model.init_model()
                print ("count done")

            if target == 'map':
                # initialize augment
                agen = augments.Augments()
                # set user train samples
                uset.setReloadedData(uidx, report_map.trainSet)

                sample_size = len(uset.users[uidx]['samples'])
                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                print "Training ... ", len(train_labels)
                t0 = time()
                model.train_model(train_features, train_labels, report_map.classifier)
                t1 = time()
                print "Training took ", t1 - t0

                slide_idx = dset.getSlideIdx(report_map.slide)
                object_num = dset.getObjNum(slide_idx)
                data_idx = dset.getDataIdx(slide_idx)
                test_features = dset.getFeatureSet(data_idx, object_num)
                x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                y_centroid_set = dset.getYcentroidSet(data_idx, object_num)

                print "Testing Start ... "
                t0 = time()
                predicts = model.predict(test_features)
                t1 = time()
                print "Predict took ", t1 - t0

                output = h5py.File(report_map.inFile, 'w')
                output.create_dataset('features', data=test_features)
                output.create_dataset('predicts', data=predicts)
                output.create_dataset('x_centroid', data=x_centroid_set)
                output.create_dataset('y_centroid', data=y_centroid_set)
                output.create_dataset('slides', data=[report_map.slide])
                output.close()

                print ("map success ", report_map.inFile)
                data = {"success": report_map.outFile}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

                uset.users = []
                uset.u_size = 0

                model = networks.Network()
                model.init_model()
                print ("map done")

            if target == 'save':
                data = finalize.getData(uset.users[uidx])
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'review':
                data = {}
                data['review'] = []

                for sample in uset.users[uidx]['samples']:
                    sample_data = {}
                    sample_data['id'] = str(sample['id'])
                    sample_data['label'] = 1 if sample['label'] == 1 else -1
                    sample_data['iteration'] = int(sample['iteration'])
                    sample_data['slide'] = str(sample['slide'])
                    sample_data['centX'] = str(sample['centX'])
                    sample_data['centY'] = str(sample['centY'])
                    sample_data['boundary'] = ""
                    sample_data['maxX'] = 0
                    sample_data['maxY'] = 0

                    data['review'].append(sample_data)

                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'train':
                # increase checkpoint by 1
                m_checkpoints += 1
                # initialize augment
                agen = augments.Augments()
                uset.setIter(uidx, t_train.iter)

                for sample in t_train.samples:
                    # init sample and augment
                    init_sample = dict(
                        id=0, f_idx=0, checkpoints=0,
                        aurl=None, feature=None, label=0,
                        iteration=0, centX=0, centY=0,
                        slideIdx=0, slide=None
                    )
                    init_augment = dict(
                        id=[], checkpoints=[], feature=[], label=[]
                    )

                    # check db_id in users samples
                    remove_idx = []
                    for u in range(len(uset.users[uidx]['samples'])):
                        if uset.users[uidx]['samples'][u]['id'] == sample['id']:
                            remove_idx.append(u)

                    for r in remove_idx:
                        uset.users[uidx]['samples'].pop(r)
                        uset.users[uidx]['augments'].pop(r)

                    # add feature
                    init_sample['id'] = sample['id']
                    init_sample['aurl'] = str(sample['aurl'])
                    init_sample['slide'] = str(sample['slide'])

                    slide_idx = dset.getSlideIdx(init_sample['slide'])
                    object_num = dset.getObjNum(slide_idx)
                    data_idx = dset.getDataIdx(slide_idx)
                    feature_set = dset.getFeatureSet(data_idx, object_num)
                    x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                    y_centroid_set = dset.getYcentroidSet(data_idx, object_num)
                    slideIdx_set = dset.getSlideIdxSet(data_idx, object_num)

                    c_idx = getIdx(
                        x_centroid_set.astype(np.float), y_centroid_set.astype(np.float), slideIdx_set.astype(np.int), np.float32(sample['centX']), np.float32(sample['centY']), slide_idx
                    )

                    f_idx = data_idx + c_idx

                    init_sample['f_idx'] =  f_idx
                    init_sample['feature'] = feature_set[c_idx]
                    init_sample['label'] = 1 if sample['label'] == 1 else 0
                    init_sample['iteration'] = t_train.iter
                    init_sample['centX'] = sample['centX']
                    init_sample['centY'] = sample['centY']
                    init_sample['checkpoints'] = m_checkpoints

                    # add augment features
                    slide_idx = dset.getSlideIdx(init_sample['slide'])
                    slide_mean = dset.getWSI_Mean(slide_idx)
                    slide_std = dset.getWSI_Std(slide_idx)

                    a_imgs = agen.prepare_image(init_sample['aurl'], slide_mean, slide_std)
                    a_featureSet = iset.FC1_MODEL.predict(a_imgs)
                    a_featureSet = PCA.transform(a_featureSet)
                    a_labelSet = np.zeros((agen.AUG_BATCH_SIZE, )).astype(np.uint8)
                    a_idSet = []
                    a_checkpointSet = []
                    for i in range(agen.AUG_BATCH_SIZE):
                        a_idSet.append(init_sample['id'])
                        a_checkpointSet.append(init_sample['checkpoints'])
                    if init_sample['label'] > 0:
                        a_labelSet.fill(1)

                    init_augment['id'] = a_idSet
                    init_augment['feature'] = a_featureSet
                    init_augment['label'] = a_labelSet
                    init_augment['checkpoints'] = a_checkpointSet

                    uset.setAugmentData(uidx, init_augment)
                    uset.setTrainSampleData(uidx, init_sample)

                sample_size = len(uset.users[uidx]['samples'])
                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                # train_labels = to_categorical(train_labels, num_classes=2)
                if tset_name is None:
                    tset_name = t_train.classifier

                print "Training ... ", len(train_labels)
                t0 = time()
                model.train_model(train_features, train_labels, tset_name)
                t1 = time()
                print "Training took ", t1 - t0

                data = {"success": 'pass'}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'retrainView':

                m_checkpoints += 1
                # initialize augment
                agen = augments.Augments()

                uset.setIter(uidx, retrain_v.iter)

                print "Augment ... ", len(retrain_v.samples)
                t0 = time()
                for sample in retrain_v.samples:
                    # init sample and augment
                    init_sample = dict(
                        id=0, f_idx=0, checkpoints=0,
                        aurl=None, feature=None, label=0,
                        iteration=0, centX=0, centY=0,
                        slideIdx=0, slide=None
                    )
                    init_augment = dict(
                        id=[], checkpoints=[], feature=[], label=[]
                    )

                    # remove samples stored if it already exists
                    remove_idx = []
                    for u in range(len(uset.users[uidx]['samples'])):
                        if uset.users[uidx]['samples'][u]['id'] == sample['id']:
                            remove_idx.append(u)

                    for r in remove_idx:
                        uset.users[uidx]['samples'].pop(r)
                        uset.users[uidx]['augments'].pop(r)

                    # add feature
                    init_sample['id'] = sample['id']
                    init_sample['aurl'] = str(sample['aurl'])
                    init_sample['slide'] = str(sample['slide'])

                    slide_idx = dset.getSlideIdx(init_sample['slide'])
                    object_num = dset.getObjNum(slide_idx)
                    data_idx = dset.getDataIdx(slide_idx)
                    feature_set = dset.getFeatureSet(data_idx, object_num)
                    x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                    y_centroid_set = dset.getYcentroidSet(data_idx, object_num)
                    slideIdx_set = dset.getSlideIdxSet(data_idx, object_num)

                    c_idx = getIdx(
                        x_centroid_set.astype(np.float), y_centroid_set.astype(np.float), slideIdx_set.astype(np.int), np.float32(sample['centX']), np.float32(sample['centY']), slide_idx
                    )

                    f_idx = data_idx + c_idx

                    init_sample['f_idx'] =  f_idx
                    init_sample['feature'] = feature_set[c_idx]
                    init_sample['label'] = 1 if sample['label'] == 1 else 0
                    init_sample['iteration'] = retrain_v.iter
                    init_sample['centX'] = sample['centX']
                    init_sample['centY'] = sample['centY']
                    init_sample['checkpoints'] = m_checkpoints

                    # add augment features
                    slide_idx = dset.getSlideIdx(init_sample['slide'])
                    slide_mean = dset.getWSI_Mean(slide_idx)
                    slide_std = dset.getWSI_Std(slide_idx)

                    a_imgs = agen.prepare_image(init_sample['aurl'], slide_mean, slide_std)
                    a_featureSet = iset.FC1_MODEL.predict(a_imgs)
                    a_featureSet = PCA.transform(a_featureSet)
                    a_labelSet = np.zeros((agen.AUG_BATCH_SIZE, )).astype(np.uint8)
                    a_idSet = []
                    a_checkpointSet = []
                    for i in range(agen.AUG_BATCH_SIZE):
                        a_idSet.append(init_sample['id'])
                        a_checkpointSet.append(init_sample['checkpoints'])
                    if init_sample['label'] > 0:
                        a_labelSet.fill(1)

                    init_augment['id'] = a_idSet
                    init_augment['feature'] = a_featureSet
                    init_augment['label'] = a_labelSet
                    init_augment['checkpoints'] = a_checkpointSet

                    uset.setAugmentData(uidx, init_augment)
                    uset.setTrainSampleData(uidx, init_sample)

                t1 = time()
                print "Augmentation took ", t1 - t0
                sample_size = len(uset.users[uidx]['samples'])
                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                # train_labels = to_categorical(train_labels, num_classes=2)
                if tset_name is None:
                    tset_name = retrain_v.classifier

                t0 = time()
                model.train_model(train_features, train_labels, tset_name)
                t1 = time()
                print "Training took ", t1 - t0, " ", len(train_labels), "Samples"

                slide_idx = dset.getSlideIdx(retrain_v.slide)
                object_num = dset.getObjNum(slide_idx)
                data_idx = dset.getDataIdx(slide_idx)
                feature_set = dset.getFeatureSet(data_idx, object_num)
                x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                y_centroid_set = dset.getYcentroidSet(data_idx, object_num)

                print "Testing Start ... "
                t0 = time()
                predictions = model.predict(feature_set)
                t1 = time()
                print "Predict took ", t1 - t0

                object_idx = load(
                    retrain_v.left, retrain_v.right, retrain_v.top, retrain_v.bottom, x_centroid_set.astype(np.float), y_centroid_set.astype(np.float)
                )
                data = {}
                for i in object_idx:
                    data[str(x_centroid_set[i][0])+'_'+str(y_centroid_set[i][0])] = str(predictions[i])

                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'retrainHeatmap':
                m_checkpoints += 1
                # initialize augment
                agen = augments.Augments()

                uset.setIter(uidx, retrain_h.iter)

                for sample in retrain_h.samples:
                    # init sample and augment
                    init_sample = dict(
                        id=0, f_idx=0, checkpoints=0,
                        aurl=None, feature=None, label=0,
                        iteration=0, centX=0, centY=0,
                        slideIdx=0, slide=None
                    )
                    init_augment = dict(
                        id=[], checkpoints=[], feature=[], label=[]
                    )

                    # remove samples stored if it already exists
                    remove_idx = []
                    for u in range(len(uset.users[uidx]['samples'])):
                        if uset.users[uidx]['samples'][u]['id'] == sample['id']:
                            remove_idx.append(u)

                    for r in remove_idx:
                        uset.users[uidx]['samples'].pop(r)
                        uset.users[uidx]['augments'].pop(r)

                    # add feature
                    init_sample['id'] = sample['id']
                    init_sample['aurl'] = str(sample['aurl'])
                    init_sample['slide'] = str(sample['slide'])

                    slide_idx = dset.getSlideIdx(init_sample['slide'])
                    object_num = dset.getObjNum(slide_idx)
                    data_idx = dset.getDataIdx(slide_idx)
                    feature_set = dset.getFeatureSet(data_idx, object_num)
                    x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                    y_centroid_set = dset.getYcentroidSet(data_idx, object_num)
                    slideIdx_set = dset.getSlideIdxSet(data_idx, object_num)

                    c_idx = getIdx(
                        x_centroid_set.astype(np.float), y_centroid_set.astype(np.float), slideIdx_set.astype(np.int), np.float32(sample['centX']), np.float32(sample['centY']), slide_idx
                    )

                    f_idx = data_idx + c_idx

                    init_sample['f_idx'] =  f_idx
                    init_sample['feature'] = feature_set[c_idx]
                    init_sample['label'] = 1 if sample['label'] == 1 else 0
                    init_sample['iteration'] = retrain_h.iter
                    init_sample['centX'] = sample['centX']
                    init_sample['centY'] = sample['centY']
                    init_sample['checkpoints'] = m_checkpoints

                    # add augment features
                    slide_idx = dset.getSlideIdx(init_sample['slide'])
                    slide_mean = dset.getWSI_Mean(slide_idx)
                    slide_std = dset.getWSI_Std(slide_idx)

                    a_imgs = agen.prepare_image(init_sample['aurl'], slide_mean, slide_std)
                    a_featureSet = iset.FC1_MODEL.predict(a_imgs)
                    a_featureSet = PCA.transform(a_featureSet)
                    a_labelSet = np.zeros((agen.AUG_BATCH_SIZE, )).astype(np.uint8)
                    a_idSet = []
                    a_checkpointSet = []
                    for i in range(agen.AUG_BATCH_SIZE):
                        a_idSet.append(init_sample['id'])
                        a_checkpointSet.append(init_sample['checkpoints'])
                    if init_sample['label'] > 0:
                        a_labelSet.fill(1)

                    init_augment['id'] = a_idSet
                    init_augment['feature'] = a_featureSet
                    init_augment['label'] = a_labelSet
                    init_augment['checkpoints'] = a_checkpointSet

                    uset.setAugmentData(uidx, init_augment)
                    uset.setTrainSampleData(uidx, init_sample)

                sample_size = len(uset.users[uidx]['samples'])
                sample_batch_size = agen.AUG_BATCH_SIZE * sample_size
                train_size = sample_size + sample_batch_size

                train_features = np.zeros((train_size, set.FEATURE_DIM))
                train_labels = np.zeros((train_size, ))

                for i in range(sample_size):
                    train_features[i] = uset.users[uidx]['samples'][i]['feature']
                    train_labels[i] = uset.users[uidx]['samples'][i]['label']
                    train_features[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['feature']
                    train_labels[i+sample_size:i+sample_size+agen.AUG_BATCH_SIZE] = uset.users[uidx]['augments'][i]['label']

                if tset_name is None:
                    tset_name = retrain_h.classifier

                t0 = time()
                model.train_model(train_features, train_labels, tset_name)
                t1 = time()
                print "Training took ", t1 - t0, " ", len(train_labels), "Samples"

                slide_idx = dset.getSlideIdx(retrain_h.slide)
                object_num = dset.getObjNum(slide_idx)
                data_idx = dset.getDataIdx(slide_idx)
                feature_set = dset.getFeatureSet(data_idx, object_num)
                x_centroid_set = dset.getXcentroidSet(data_idx, object_num)
                y_centroid_set = dset.getYcentroidSet(data_idx, object_num)

                print "Testing Start ... "
                t0 = time()
                if set.IS_HEATMAP == False:
                    scores = model.predict_prob(feature_set)
                t1 = time()
                print "Predict took ", t1 - t0
                # set x and y maps
                retrain_h.setXandYmap()
                # write heatmaps
                retrain_h.setHeatMap(x_centroid_set, y_centroid_set, scores)
                # get heatmap data
                data = retrain_h.getData(0)

                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'cancel':

                uset.users = []
                uset.u_size = 0
                is_normal_loaded = True
                tset_name = None
                is_reloaded = False
                m_checkpoints = 0

                del select
                del finalize
                del viewer
                del retrain_v
                del retrain_h
                del heat
                del t_train
                del report_label

                model = networks.Network()
                model.init_model()
                # dset = dataset.Dataset(set.PATH_TO_SPECIAL)

                data = {"success": 'pass'}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)

            if target == 'reviewSave':
                # modify labels if they are changed on review tab
                for q_sample in q_samples:
                    for sample in uset.users[uidx]['samples']:
                        if sample['id'] == q_sample['id']:
                            sample['label'] = 1 if q_sample['label'] == 1 else 0

                    for sample in uset.users[uidx]['augments']:
                        if sample['id'][0] == q_sample['id']:
                            sample['label'][:] = 1 if q_sample['label'] == 1 else 0

                data = {"success": 'pass'}
                db.set(q_uid, json.dumps(data))
                db.ltrim(set.REQUEST_QUEUE, len(q_uid), -1)