コード例 #1
0
ファイル: train.py プロジェクト: raulperod/FaceLock
    def read(self,
             img_rows=IMAGE_SIZE,
             img_cols=IMAGE_SIZE,
             img_channels=3,
             nb_classes=2):

        images, labels = extract_data(self.TRAIN_DATA)
        labels = np.reshape(labels, [-1])
        X_train, X_test, y_train, y_test = train_test_split(
            images, labels, test_size=0.3, random_state=random.randint(0, 100))
        X_valid, X_test, y_valid, y_test = train_test_split(
            images, labels, test_size=0.5, random_state=random.randint(0, 100))
        if K.image_dim_ordering() == 'th':
            X_train = X_train.reshape(X_train.shape[0], img_channels, img_rows,
                                      img_cols)
            X_valid = X_valid.reshape(X_valid.shape[0], img_channels, img_rows,
                                      img_cols)
            X_test = X_test.reshape(X_test.shape[0], img_channels, img_rows,
                                    img_cols)
            input_shape = (img_channels, img_rows, img_cols)
        else:
            X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols,
                                      img_channels)
            X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols,
                                      img_channels)
            X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols,
                                    img_channels)
            input_shape = (img_rows, img_cols, img_channels)

        print('X_train shape:', X_train.shape)
        print(X_train.shape[0], 'train samples')
        print(X_valid.shape[0], 'valid samples')
        print(X_test.shape[0], 'test samples')

        Y_train = np_utils.to_categorical(y_train, nb_classes)
        Y_valid = np_utils.to_categorical(y_valid, nb_classes)
        Y_test = np_utils.to_categorical(y_test, nb_classes)

        X_train = X_train.astype('float32')
        X_valid = X_valid.astype('float32')
        X_test = X_test.astype('float32')
        X_train /= 255
        X_valid /= 255
        X_test /= 255

        self.X_train = X_train
        self.X_valid = X_valid
        self.X_test = X_test
        self.Y_train = Y_train
        self.Y_valid = Y_valid
        self.Y_test = Y_test
コード例 #2
0
ファイル: train.py プロジェクト: houxingxing/gitskill
    def read(self):
        image,label=extract_data()
        label=label.reshape((label.shape[0],))
        n=[i for i in range(image.shape[0])]
        random.shuffle(n)
        image=image[n]
        label=label[n]
        X_train=image[0:384]
        Y_train=label[0:384]
        X_valid=image[384:512]
        Y_valid=label[384:512]
        X_test=image[512:]
        Y_test=label[512:]
        img_rows,img_cols=64,64
        nb_classes=2
        if K.image_dim_ordering() == 'th':
            X_train = X_train.reshape(X_train.shape[0], 3, img_rows, img_cols)
            X_valid = X_valid.reshape(X_valid.shape[0], 3, img_rows, img_cols)
            X_test = X_test.reshape(X_test.shape[0], 3, img_rows, img_cols)
            input_shape = (3, img_rows, img_cols)
        else:
            X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 3)
            X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols, 3)
            X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 3)
            input_shape = (img_rows, img_cols, 3)

        # the data, shuffled and split between train and test sets
        print('X_train shape:', X_train.shape)
        print(X_train.shape[0], 'train samples')
        print(X_valid.shape[0], 'valid samples')
        print(X_test.shape[0], 'test samples')

        # convert class vectors to binary class matrices
        Y_train = np_utils.to_categorical(Y_train, nb_classes)
        Y_valid = np_utils.to_categorical(Y_valid, nb_classes)
        Y_test = np_utils.to_categorical(Y_test, nb_classes)

        X_train = X_train.astype('float32')
        X_valid = X_valid.astype('float32')
        X_test = X_test.astype('float32')
        X_train /= 255
        X_valid /= 255
        X_test /= 255

        self.X_train = X_train
        self.X_valid = X_valid
        self.X_test = X_test
        self.Y_train = Y_train
        self.Y_valid = Y_valid
        self.Y_test = Y_test
コード例 #3
0
ファイル: train.py プロジェクト: asdlei99/Recognizer
    def read(self,
             img_rows=IMAGE_SIZE,
             img_cols=IMAGE_SIZE,
             img_channels=3,
             nb_classes=2):
        images, labels = extract_data('./data/' + ip + '/')
        labels = np.reshape(labels, [-1])
        # numpy.reshape
        X_train, X_test, y_train, y_test = train_test_split(
            images, labels, test_size=0.3, random_state=random.randint(0, 100))
        X_valid, X_test, y_valid, y_test = train_test_split(
            images, labels, test_size=0.5, random_state=random.randint(0, 100))
        if K.image_dim_ordering() == 'th':
            X_train = X_train.reshape(X_train.shape[0], 3, img_rows, img_cols)
            X_valid = X_valid.reshape(X_valid.shape[0], 3, img_rows, img_cols)
            X_test = X_test.reshape(X_test.shape[0], 3, img_rows, img_cols)
            input_shape = (3, img_rows, img_cols)
        else:
            X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 3)
            X_valid = X_valid.reshape(X_valid.shape[0], img_rows, img_cols, 3)
            X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 3)
            input_shape = (img_rows, img_cols, 3)

        # the data, shuffled and split between train and test sets
        print('X_train shape:', X_train.shape)
        print(X_train.shape[0], 'train samples')
        print(X_valid.shape[0], 'valid samples')
        print(X_test.shape[0], 'test samples')

        # convert class vectors to binary class matrices
        Y_train = np_utils.to_categorical(y_train, nb_classes)
        Y_valid = np_utils.to_categorical(y_valid, nb_classes)
        Y_test = np_utils.to_categorical(y_test, nb_classes)

        X_train = X_train.astype('float32')
        X_valid = X_valid.astype('float32')
        X_test = X_test.astype('float32')
        X_train /= 255
        X_valid /= 255
        X_test /= 255

        self.X_train = X_train
        self.X_valid = X_valid
        self.X_test = X_test
        self.Y_train = Y_train
        self.Y_valid = Y_valid
        self.Y_test = Y_test
コード例 #4
0
ファイル: train_main.py プロジェクト: Seanspt/naked-detection
    def read(self,
             img_rows=IMAGE_SIZE_HEIGHT,
             img_cols=IMAGE_SIZE_WIDTH,
             img_channels=3,
             nb_classes=2):
        images, labels = extract_data('./data1/')
        # labels = np.reshape(labels, [-1])

        # numpy.reshape
        X_train, X_test, y_train, y_test = train_test_split(
            images,
            labels,
            test_size=0.3,
            stratify=labels,
            random_state=random.randint(0, 100))
        X_valid, _, y_valid, _ = train_test_split(images,
                                                  labels,
                                                  test_size=0.5,
                                                  random_state=random.randint(
                                                      0, 100))

        # the data, shuffled and split between train and test sets
        print 'X_train shape:', X_train.shape
        print X_train.shape[0], 'train samples'
        print X_valid.shape[0], 'valid samples'
        print X_test.shape[0], 'test samples'

        # convert class vectors to binary class matrices
        Y_train = np_utils.to_categorical(y_train, nb_classes)
        Y_valid = np_utils.to_categorical(y_valid, nb_classes)
        Y_test = np_utils.to_categorical(y_test, nb_classes)

        X_train = X_train.astype('float32')
        X_valid = X_valid.astype('float32')
        X_test = X_test.astype('float32')
        X_train /= 255
        X_valid /= 255
        X_test /= 255

        self.X_train = X_train
        self.X_valid = X_valid
        self.X_test = X_test
        self.Y_train = Y_train
        self.Y_valid = Y_valid
        self.Y_test = Y_test
コード例 #5
0
    def read(self, input_dir):
        images, labels, nb_classes = extract_data(input_dir)

        # shuffle and split data between train and test sets
        x_train, x_test, y_train, y_test = train_test_split(
            images,
            labels,
            test_size=0.3,
            random_state=random.randint(0, 100)
        )
        x_valid, x_test, y_valid, y_test = train_test_split(
            images,
            labels,
            test_size=0.5,
            random_state=random.randint(0, 100)
        )

        print('x_train shape:', x_train.shape)
        print(x_train.shape[0], 'train samples')
        print(x_valid.shape[0], 'valid samples')
        print(x_test.shape[0], 'test samples')

        # # convert class vectors to binary class matrices
        # y_train = np_utils.to_categorical(y_train, nb_classes)
        # y_valid = np_utils.to_categorical(y_valid, nb_classes)
        # y_test = np_utils.to_categorical(y_test, nb_classes)

        x_train = x_train.astype('float32')
        x_valid = x_valid.astype('float32')
        x_test = x_test.astype('float32')
        x_train /= 255
        x_valid /= 255
        x_test /= 255

        self.x_train = x_train
        self.x_valid = x_valid
        self.x_test = x_test
        self.y_train = y_train
        self.y_valid = y_valid
        self.y_test = y_test

        return nb_classes
コード例 #6
0
    else: y = 0
    h += 2 * CropPadding
    if x > CropPadding: x = x - CropPadding
    else: x = 0
    w += 2 * CropPadding
    return [x, y, w, h]


if __name__ == '__main__':
    model = Model()
    model.load()

    # Get Cascade Classifier
    cascade = cv2.CascadeClassifier(cascade_path)

    images, labels = extract_data(test_path)
    labels = np.reshape(labels, [-1])

    right = 0
    cross = 0
    countme = 0
    countnotme = 0
    rightme = 0
    rightnotme = 0

    for idx, image in enumerate(images):
        # To gray image
        if GRAY_MODE == True:
            #frame_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            frame_gray = image
        else: