def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20, 50], batch_size=500): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] import input_data_LIDC input_data_LIDC.esprint("type: " + str(type(test_set_y))) input_data_LIDC.esprint("test_set_x.shape: " + str(test_set_x.shape)) input_data_LIDC.esprint("test_set_y.shape: " + str(test_set_y.shape)) input_data_LIDC.esprint(theano.printing.Print('test_set_y')(test_set_y)) # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2)) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2)) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer3.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) validate_model = theano.function( [index], layer3.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [(param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads)] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size] }) # end-snippet-1 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [ validate_model(i) for i in xrange(n_valid_batches) ] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print( 'Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))
def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20, 50], batch_size=500): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] import input_data_LIDC input_data_LIDC.esprint("type: " + str(type(test_set_y))) input_data_LIDC.esprint("test_set_x.shape: " + str(test_set_x.shape)) input_data_LIDC.esprint("test_set_y.shape: " + str(test_set_y.shape)) input_data_LIDC.esprint(theano.printing.Print('test_set_y')(test_set_y)) # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer( rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer3.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( [index], layer3.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-1 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))
# Consts. inputDataFilePath = "" inputTargetFilePath = "" inputImageSOPToFileNameMapping = "LIDC_Complete_20141106/Extracts/DICOM_metadata_extracts/" if len(sys.argv) <= 2: sys.exit("Specify the patient to process, e.g. 'LIDC-IDRI-0001'.") patId = sys.argv[1] imageType = sys.argv[2] # bin or orig # If pickled dataset joining X & y values doesn't exist, then create it; else, use it. pickle_file_name = "Evans-MacBook-Pro.local-8x8_edge_patches-"+imageType+"-"+patId+".pickle" if os.path.isfile(pickle_file_name): input_data_LIDC.esprint("Unpickling: " + pickle_file_name) with open(pickle_file_name, "rb") as pickle_file: dataset_input = pickle.load(pickle_file) else: dataset_input = input_data_LIDC.read_data_sets( '../../../LIDC_Complete_20141106/LIDC-IDRI-edge_patches/'+patId, (os.sep + imageType + os.sep), '*.tiff', '../../../LIDC_Complete_20141106/Extracts/master_join4.csv', '../../../LIDC_Complete_20141106/Extracts/DICOM_metadata_extracts/', '*.csv') input_data_LIDC.esprint("Pickling: " + pickle_file_name) with open(pickle_file_name, "wb") as pickle_file: pickle.dump(dataset_input, pickle_file) esprint("Done pickling.")
# Consts. inputDataFilePath = "" inputTargetFilePath = "" inputImageSOPToFileNameMapping = "LIDC_Complete_20141106/Extracts/DICOM_metadata_extracts/" if len(sys.argv) <= 2: sys.exit("Specify the patient to process, e.g. 'LIDC-IDRI-0001'.") patId = sys.argv[1] imageType = sys.argv[2] # bin or orig # If pickled dataset joining X & y values doesn't exist, then create it; else, use it. pickle_file_name = "Evans-MacBook-Pro.local-8x8_edge_patches-" + imageType + "-" + patId + ".pickle" if os.path.isfile(pickle_file_name): input_data_LIDC.esprint("Unpickling: " + pickle_file_name) with open(pickle_file_name, "rb") as pickle_file: dataset_input = pickle.load(pickle_file) else: dataset_input = input_data_LIDC.read_data_sets( "../../../LIDC_Complete_20141106/LIDC-IDRI-edge_patches/" + patId, (os.sep + imageType + os.sep), "*.tiff", "../../../LIDC_Complete_20141106/Extracts/master_join4.csv", "../../../LIDC_Complete_20141106/Extracts/DICOM_metadata_extracts/", "*.csv", ) input_data_LIDC.esprint("Pickling: " + pickle_file_name) with open(pickle_file_name, "wb") as pickle_file: pickle.dump(dataset_input, pickle_file) esprint("Done pickling.")
import numpy as np import math import os import pickle import multiprocessing import random import json import itertools import tensorflow as tf # Read file paths, image attrs from a config file. (TODO: could determine input sizes from input.) cfg = None input_data_LIDC.esprint("Reading configuration...") with open('runTensorFlowLIDC.config.json', 'r') as f: cfg = json.load(f) ### Define hyperparmameters variables & functions. batch_size = cfg["batch_size"] nIters = cfg["num_iterations"] validation_accuracy_min_cutoff = cfg["validation_accuracy_min_cutoff"] learning_rate = cfg["learning_rate"] # # USE ONLY LIDC-IDRI-0001: # dataset = input_data_LIDC.read_data_sets( # "../data/LIDC/resized_images-236x236/LIDC-IDRI-0001/", # "../data/LIDC/resized_images/"
import input_data_LIDC import numpy as np import math import os import pickle import multiprocessing import random import json import itertools import tensorflow as tf # Read file paths, image attrs from a config file. (TODO: could determine input sizes from input.) cfg = None input_data_LIDC.esprint("Reading configuration...") with open('runTensorFlowLIDC.config.json', 'r') as f: cfg = json.load(f) ### Define hyperparmameters variables & functions. batch_size = cfg["batch_size"] nIters = cfg["num_iterations"] validation_accuracy_min_cutoff = cfg["validation_accuracy_min_cutoff"] learning_rate = cfg["learning_rate"] # # USE ONLY LIDC-IDRI-0001: # dataset = input_data_LIDC.read_data_sets( # "../data/LIDC/resized_images-236x236/LIDC-IDRI-0001/", # "../data/LIDC/resized_images/" # "*.tiff", # '/Users/estory/Documents/syncable/School/DePaul/research/LIDC_Complete_20141106/Extracts/master_join4.csv', # '/Users/estory/Documents/syncable/School/DePaul/research/LIDC_Complete_20141106/Extracts/DICOM_metadata_extracts/',