コード例 #1
0
    def detect_face(self, img, det_type=0):
        """
            detect face over img
        Parameters:
        ----------
            img: numpy array, bgr order of shape (1, 3, n, m)
                input image
        Retures:
        -------
            bboxes: numpy array, n x 5 (x1,y2,x2,y2,score)
                bboxes
            points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
                landmarks
        """

        # check input
        height, width, _ = img.shape
        if det_type == 0:
            MIN_DET_SIZE = 12

            if img is None:
                return None

            if len(img.shape) != 3:
                return None

            minl = min(height, width)

            scales = []
            m = MIN_DET_SIZE / self.minsize
            minl *= m
            factor_count = 0
            while minl > MIN_DET_SIZE:
                scales.append(m * self.factor**factor_count)
                minl *= self.factor
                factor_count += 1

            sliced_index = self.slice_index(len(scales))
            total_boxes = []
            for batch in sliced_index:
                local_boxes = map( detect_first_stage_warpper, \
                        zip(repeat(img), self.PNets[:len(batch)], [scales[i] for i in batch], repeat(self.threshold[0])) )
                total_boxes.extend(local_boxes)

            total_boxes = [i for i in total_boxes if i is not None]

            if len(total_boxes) == 0:
                return None

            total_boxes = np.vstack(total_boxes)

            if total_boxes.size == 0:
                return None

            pick = nms(total_boxes[:, 0:5], 0.7, 'Union')
            total_boxes = total_boxes[pick]

            bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
            bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1

            total_boxes = np.vstack([
                total_boxes[:, 0] + total_boxes[:, 5] * bbw,
                total_boxes[:, 1] + total_boxes[:, 6] * bbh,
                total_boxes[:, 2] + total_boxes[:, 7] * bbw,
                total_boxes[:, 3] + total_boxes[:, 8] * bbh, total_boxes[:, 4]
            ])

            total_boxes = total_boxes.T
            total_boxes = self.convert_to_square(total_boxes)
            total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
        else:
            total_boxes = np.array(
                [[0.0, 0.0, img.shape[1], img.shape[0], 0.9]],
                dtype=np.float32)

        #############################################
        # second stage
        #############################################
        num_box = total_boxes.shape[0]

        # pad the bbox
        [dy, edy, dx, edx, y, ey, x, ex, tmpw,
         tmph] = self.pad(total_boxes, width, height)
        # (3, 24, 24) is the input shape for RNet
        input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)

        for i in range(num_box):
            tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
            tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = img[y[i]:ey[i] + 1,
                                                             x[i]:ex[i] + 1, :]
            input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))

        output = self.RNet.predict(input_buf)

        # filter the total_boxes with threshold
        passed = np.where(output[1][:, 1] > self.threshold[1])
        total_boxes = total_boxes[passed]

        if total_boxes.size == 0:
            return None

        total_boxes[:, 4] = output[1][passed, 1].reshape((-1, ))
        reg = output[0][passed]

        # nms
        pick = nms(total_boxes, 0.7, 'Union')
        total_boxes = total_boxes[pick]
        total_boxes = self.calibrate_box(total_boxes, reg[pick])
        total_boxes = self.convert_to_square(total_boxes)
        total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])

        #############################################
        # third stage
        #############################################
        num_box = total_boxes.shape[0]

        # pad the bbox
        [dy, edy, dx, edx, y, ey, x, ex, tmpw,
         tmph] = self.pad(total_boxes, width, height)
        # (3, 48, 48) is the input shape for ONet
        input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)

        for i in range(num_box):
            tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
            tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = img[y[i]:ey[i] + 1,
                                                             x[i]:ex[i] + 1, :]
            input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))

        output = self.ONet.predict(input_buf)

        # filter the total_boxes with threshold
        passed = np.where(output[2][:, 1] > self.threshold[2])
        total_boxes = total_boxes[passed]

        if total_boxes.size == 0:
            return None

        total_boxes[:, 4] = output[2][passed, 1].reshape((-1, ))
        reg = output[1][passed]
        points = output[0][passed]

        # compute landmark points
        bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
        bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
        points[:, 0:5] = np.expand_dims(
            total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
        points[:, 5:10] = np.expand_dims(
            total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]

        # nms
        total_boxes = self.calibrate_box(total_boxes, reg)
        pick = nms(total_boxes, 0.7, 'Min')
        total_boxes = total_boxes[pick]
        points = points[pick]

        if not self.accurate_landmark:
            return total_boxes, points

        #############################################
        # extended stage
        #############################################
        num_box = total_boxes.shape[0]
        patchw = np.maximum(total_boxes[:, 2] - total_boxes[:, 0] + 1,
                            total_boxes[:, 3] - total_boxes[:, 1] + 1)
        patchw = np.round(patchw * 0.25)

        # make it even
        patchw[np.where(np.mod(patchw, 2) == 1)] += 1

        input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
        for i in range(5):
            x, y = points[:, i], points[:, i + 5]
            x, y = np.round(x - 0.5 * patchw), np.round(y - 0.5 * patchw)
            [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(
                np.vstack([x, y, x + patchw - 1, y + patchw - 1]).T, width,
                height)
            for j in range(num_box):
                tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
                tmpim[dy[j]:edy[j] + 1,
                      dx[j]:edx[j] + 1, :] = img[y[j]:ey[j] + 1,
                                                 x[j]:ex[j] + 1, :]
                input_buf[j, i * 3:i * 3 + 3, :, :] = adjust_input(
                    cv2.resize(tmpim, (24, 24)))

        output = self.LNet.predict(input_buf)

        pointx = np.zeros((num_box, 5))
        pointy = np.zeros((num_box, 5))

        for k in range(5):
            # do not make a large movement
            tmp_index = np.where(np.abs(output[k] - 0.5) > 0.35)
            output[k][tmp_index[0]] = 0.5

            pointx[:, k] = np.round(points[:, k] -
                                    0.5 * patchw) + output[k][:, 0] * patchw
            pointy[:, k] = np.round(points[:, k + 5] -
                                    0.5 * patchw) + output[k][:, 1] * patchw

        points = np.hstack([pointx, pointy])
        points = points.astype(np.int32)

        return total_boxes, points
コード例 #2
0
    def detect_face_limited(self, img, det_type=2):
        height, width, _ = img.shape
        if det_type >= 2:
            total_boxes = np.array(
                [[0.0, 0.0, img.shape[1], img.shape[0], 0.9]],
                dtype=np.float32)
            num_box = total_boxes.shape[0]

            # pad the bbox
            [dy, edy, dx, edx, y, ey, x, ex, tmpw,
             tmph] = self.pad(total_boxes, width, height)
            # (3, 24, 24) is the input shape for RNet
            input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)

            for i in range(num_box):
                tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
                tmp[dy[i]:edy[i] + 1,
                    dx[i]:edx[i] + 1, :] = img[y[i]:ey[i] + 1,
                                               x[i]:ex[i] + 1, :]
                input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))

            output = self.RNet.predict(input_buf)

            # filter the total_boxes with threshold
            passed = np.where(output[1][:, 1] > self.threshold[1])
            total_boxes = total_boxes[passed]

            if total_boxes.size == 0:
                return None

            total_boxes[:, 4] = output[1][passed, 1].reshape((-1, ))
            reg = output[0][passed]

            # nms
            pick = nms(total_boxes, 0.7, 'Union')
            total_boxes = total_boxes[pick]
            total_boxes = self.calibrate_box(total_boxes, reg[pick])
            total_boxes = self.convert_to_square(total_boxes)
            total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
        else:
            total_boxes = np.array(
                [[0.0, 0.0, img.shape[1], img.shape[0], 0.9]],
                dtype=np.float32)
        num_box = total_boxes.shape[0]
        [dy, edy, dx, edx, y, ey, x, ex, tmpw,
         tmph] = self.pad(total_boxes, width, height)
        # (3, 48, 48) is the input shape for ONet
        input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)

        for i in range(num_box):
            tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
            tmp[dy[i]:edy[i] + 1, dx[i]:edx[i] + 1, :] = img[y[i]:ey[i] + 1,
                                                             x[i]:ex[i] + 1, :]
            input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))

        output = self.ONet.predict(input_buf)
        #print(output[2])

        # filter the total_boxes with threshold
        passed = np.where(output[2][:, 1] > self.threshold[2])
        total_boxes = total_boxes[passed]

        if total_boxes.size == 0:
            return None

        total_boxes[:, 4] = output[2][passed, 1].reshape((-1, ))
        reg = output[1][passed]
        points = output[0][passed]

        # compute landmark points
        bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
        bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
        points[:, 0:5] = np.expand_dims(
            total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
        points[:, 5:10] = np.expand_dims(
            total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]

        # nms
        total_boxes = self.calibrate_box(total_boxes, reg)
        pick = nms(total_boxes, 0.7, 'Min')
        total_boxes = total_boxes[pick]
        points = points[pick]

        if not self.accurate_landmark:
            return total_boxes, points

        #############################################
        # extended stage
        #############################################
        num_box = total_boxes.shape[0]
        patchw = np.maximum(total_boxes[:, 2] - total_boxes[:, 0] + 1,
                            total_boxes[:, 3] - total_boxes[:, 1] + 1)
        patchw = np.round(patchw * 0.25)

        # make it even
        patchw[np.where(np.mod(patchw, 2) == 1)] += 1

        input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
        for i in range(5):
            x, y = points[:, i], points[:, i + 5]
            x, y = np.round(x - 0.5 * patchw), np.round(y - 0.5 * patchw)
            [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(
                np.vstack([x, y, x + patchw - 1, y + patchw - 1]).T, width,
                height)
            for j in range(num_box):
                tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
                tmpim[dy[j]:edy[j] + 1,
                      dx[j]:edx[j] + 1, :] = img[y[j]:ey[j] + 1,
                                                 x[j]:ex[j] + 1, :]
                input_buf[j, i * 3:i * 3 + 3, :, :] = adjust_input(
                    cv2.resize(tmpim, (24, 24)))

        output = self.LNet.predict(input_buf)

        pointx = np.zeros((num_box, 5))
        pointy = np.zeros((num_box, 5))

        for k in range(5):
            # do not make a large movement
            tmp_index = np.where(np.abs(output[k] - 0.5) > 0.35)
            output[k][tmp_index[0]] = 0.5

            pointx[:, k] = np.round(points[:, k] -
                                    0.5 * patchw) + output[k][:, 0] * patchw
            pointy[:, k] = np.round(points[:, k + 5] -
                                    0.5 * patchw) + output[k][:, 1] * patchw

        points = np.hstack([pointx, pointy])
        points = points.astype(np.int32)

        return total_boxes, points