def test_fillna_numerical(): df_test = InsolverDataFrame(pd.DataFrame(data={'col1': [1, 2, np.nan]})) df_transformed = InsolverTransform(df_test, [ AutoFillNATransforms(), ]) df_transformed.ins_transform() assert df_transformed['col1'][2] == 1.5
def test_fillna_categorical(): df_test = InsolverDataFrame( pd.DataFrame(data={'col1': ['A', 'B', 'C', 'A', None]})) df_transformed = InsolverTransform(df_test, [ AutoFillNATransforms(), ]) df_transformed.ins_transform() assert df_transformed['col1'][4] == 'A'
def test_fillna_categorical_all_na(): df_test = InsolverDataFrame( pd.DataFrame(data={'col1': [None, None, None]})) df_transformed = InsolverTransform(df_test, [ AutoFillNATransforms(), ]) df_transformed.ins_transform() assert df_transformed['col1'][0] == 1 assert df_transformed['col1'][1] == 1 assert df_transformed['col1'][2] == 1
def test_EncoderTransforms(): df_test = InsolverDataFrame( pd.DataFrame(data={'col1': ['A', 'B', 'C', 'A']})) df_transformed = InsolverTransform(df_test, [ EncoderTransforms(['col1']), ]) df_transformed.ins_transform() assert df_transformed['col1'][0] == 0 assert df_transformed['col1'][1] == 1 assert df_transformed['col1'][2] == 2 assert df_transformed['col1'][3] == 0
def test_OneHotEncoderTransforms(): df_test = InsolverDataFrame( pd.DataFrame(data={'col1': ['A', 'B', 'C', 'A']})) df_transformed = InsolverTransform(df_test, [ OneHotEncoderTransforms(['col1']), ]) df_transformed.ins_transform() assert 'col1_A' in df_transformed.columns assert 'col1_B' in df_transformed.columns assert 'col1_C' in df_transformed.columns assert df_transformed['col1_A'][0] == 1 assert df_transformed['col1_B'][1] == 1 assert df_transformed['col1_C'][2] == 1 assert df_transformed['col1_A'][3] == 1
def get_claims(self): if self._df_claims_result: return InsolverDataFrame(self._df_claims_result) else: return None
def get_policies(self): if self._df_policies_result: return InsolverDataFrame(self._df_policies_result) else: return None