コード例 #1
0
def test_source_depth_error_handling(all_remote_dbs):
    """
    Test the seismogram extraction from local and remote databases.
    """
    db = all_remote_dbs

    # Skip forward databases.
    if "100s_db_fwd" in db._client.filepath:
        return

    # Mock responses to get the tornado testing to work.
    _add_callback(db._client)

    # 900 km is deeper than any test database.
    src = instaseis.Source(
        latitude=4.0,
        longitude=3.0,
        depth_in_m=900000,
        m_rr=4.71e17,
        m_tt=3.81e17,
        m_pp=-4.74e17,
        m_rt=3.99e17,
        m_rp=-8.05e17,
        m_tp=-1.23e17,
    )
    rec = instaseis.Receiver(latitude=10.0, longitude=20.0, depth_in_m=0)

    with pytest.raises(ValueError) as err:
        db.get_seismograms(source=src, receiver=rec)

    assert err.value.args[0] == (
        "Source too deep. Source would be located at a radius of 5471000.0 "
        "meters. The database supports source radii from 6000000.0 to "
        "6371000.0 meters.")

    # Too shallow.
    src = instaseis.Source(
        latitude=4.0,
        longitude=3.0,
        depth_in_m=-10000,
        m_rr=4.71e17,
        m_tt=3.81e17,
        m_pp=-4.74e17,
        m_rt=3.99e17,
        m_rp=-8.05e17,
        m_tp=-1.23e17,
    )
    rec = instaseis.Receiver(latitude=10.0, longitude=20.0, depth_in_m=0)

    with pytest.raises(ValueError) as err:
        db.get_seismograms(source=src, receiver=rec)

    assert err.value.args[0] == (
        "Source is too shallow. Source would be located at a radius of "
        "6381000.0 meters. The database supports source radii from "
        "6000000.0 to 6371000.0 meters.")
コード例 #2
0
 def get_receiver(self):
     receiver = instaseis.Receiver(latitude=self.prior['la_r'],
                                   longitude=self.prior['lo_r'],
                                   network=self.prior['network'],
                                   station=self.prior['station'],
                                   location=self.prior['location'],
                                   depth_in_m=self.prior['rec_depth'])
     return receiver
コード例 #3
0
    def prepare(self):

        # initialize parameters
        self.Fs = self.config['wavefield_sampling_rate']
        self.npts = int(self.config['wavefield_duration'] * self.Fs)
        self.ntraces = self.sourcegrid.shape[-1]
        self.data_quantity = self.config['synt_data']

        if self.config['wavefield_domain'] == 'fourier':
            self.fdomain = True
            if self.npts % 2 == 1:
                self.npad = 2 * self.npts - 2
            else:
                self.npad = 2 * self.npts
        elif self.config['wavefield_domain'] == 'time':
            self.fdomain = False
            self.npad = next_fast_len(2 * self.npts - 1)
        else:
            raise ValueError('Unknown domain {}.'.format(
                self.config['wavefield_domain']))
        self.freq = np.fft.rfftfreq(self.npad, d=1.0 / self.Fs)

        # Apply a filter
        if self.config['wavefield_filter'] is not None:
            freq_nyq = self.Fs / 2.0  # Nyquist

            if freq_nyq < self.config['wavefield_filter'][1]:
                warn("Selected upper freq > Nyquist, \
reset to 95\% of Nyquist freq.")
            freq_minres = 1. / self.config['wavefield_duration']
            # lowest resolved
            freq_max = min(0.999 * freq_nyq,
                           self.config['wavefield_filter'][1])
            freq_min = max(freq_minres, self.config['wavefield_filter'][0])

            f0 = freq_min / freq_nyq
            f1 = freq_max / freq_nyq
            self.filter = butter(4, [f0, f1], 'bandpass')
        else:
            self.filter = None

        # if using instaseis: Find and open database
        if self.config['wavefield_type'] == 'instaseis':
            path_to_db = self.config['wavefield_path']
            self.db = instaseis.open_db(path_to_db)
            if self.db.info['length'] < self.npts / self.Fs:
                warn("Resetting wavefield duration to axisem database length.")
                fsrc = instaseis.ForceSource(latitude=0.0,
                                             longitude=0.0,
                                             f_r=1.0)
                rec = instaseis.Receiver(latitude=0.0, longitude=0.0)
                test = self.db.get_seismograms(source=fsrc,
                                               receiver=rec,
                                               dt=1. / self.Fs)
                self.npts = test[0].stats.npts
コード例 #4
0
ファイル: tests_stream.py プロジェクト: woxin5295/stfinv
def test_get_grf6():

    db = instaseis.open_db('syngine://prem_a_20s')

    reclat = 10.0
    reclon = 10.0

    cat = obspy.read_events('./stfinv/data/virginia.xml')
    # Define Moment tensor
    tensor = cat[0].focal_mechanisms[0].moment_tensor.tensor
    # tensor = obspy.core.event.Tensor(m_rr=1e20, m_pp=-2e20, m_tt=0.5e20,
    #                                  m_rt=5e19, m_rp=-7e19, m_tp=-1e20)

    # Get a reference trace with normal instaseis
    rec = instaseis.Receiver(latitude=reclat,
                             longitude=reclon,
                             network='XX',
                             station='YY',
                             location='00')

    # src = instaseis.Source(latitude=evlat, longitude=evlon,
    #                        m_rr=tensor.m_rr,
    #                        m_tt=tensor.m_tt,
    #                        m_pp=tensor.m_pp,
    #                        m_tp=tensor.m_tp,
    #                        m_rt=tensor.m_rt,
    #                        m_rp=tensor.m_rp,
    #                        depth_in_m=evdepth)
    src = instaseis.Source.parse(cat[0])

    st_ref = db.get_seismograms(src, rec, dt=0.1, components='Z')

    # Get a synthetic
    st_grf6 = Stream()
    st_grf6 += get_grf6(db,
                        origin=cat[0].origins[0],
                        rec_lat=reclat,
                        rec_lon=reclon,
                        dt=0.1,
                        stats=st_ref[0].stats,
                        depth_in_m=cat[0].origins[0].depth)

    st_synth = st_grf6.calc_synthetic_from_grf6(st_ref, tensor=tensor, stf=[1])

    # st_synth.plot(outfile='synth.png')
    # st_ref.plot(outfile='ref.png')

    npt.assert_allclose(st_ref[0].data,
                        st_synth[0].data,
                        rtol=5e-1,
                        atol=1e-7,
                        err_msg='Synthetic not the same')
コード例 #5
0
    def _calc(self):
        db = instaseis.open_db(self.db_name)

        nazi = 8

        dt = min([self.dt, db.info.dt])

        lats = np.linspace(start=-90., stop=90., num=self.ndist)
        lons = np.linspace(start=-180, stop=180., num=nazi, endpoint=False)

        src = instaseis.Source(latitude=90.0,
                               longitude=0.0,
                               depth_in_m=self.depth_in_m,
                               m_rr=-1.670000e+28 / 1e7,
                               m_tt=3.820000e+27 / 1e7,
                               m_pp=1.280000e+28 / 1e7,
                               m_rt=-7.840000e+27 / 1e7,
                               m_rp=-3.570000e+28 / 1e7,
                               m_tp=1.550000e+27 / 1e7)

        npts = _get_npts(db, dt)

        stack_R = np.zeros(shape=(self.ndist, nazi, npts))
        stack_T = np.zeros(shape=(self.ndist, nazi, npts))
        stack_Z = np.zeros(shape=(self.ndist, nazi, npts))

        for ilat in tqdm(range(0, int(self.ndist))):
            lat = lats[ilat]

            for ilon in range(0, nazi):
                lon = lons[ilon]
                rec = instaseis.Receiver(latitude=lat,
                                         longitude=lon,
                                         network="AB",
                                         station="%d" % lon)

                st = db.get_seismograms(src,
                                        rec,
                                        components='RTZ',
                                        kind='velocity',
                                        dt=dt,
                                        remove_source_shift=True)

                stack_R[ilat, ilon, :] = st.select(channel='*R')[0].data
                stack_T[ilat, ilon, :] = st.select(channel='*T')[0].data
                stack_Z[ilat, ilon, :] = st.select(channel='*Z')[0].data

        return stack_R, stack_T, stack_Z, st[0].stats, db.info
コード例 #6
0
def select_and_add(st, db_HF, db_LF, M, dist):
    winlen_hours = 4
    tstart_total = float(st[0].stats.starttime) + 3600
    tend_total = float(st[0].stats.endtime) - 3600 * (winlen_hours + 1)

    tstart_win = tstart_total + (tend_total - tstart_total) * np.random.rand(1)
    tend_win = tstart_win + 3600 * winlen_hours

    t0 = tstart_win + 600 + (tend_win - 4200 - tstart_win) * np.random.rand(1)

    st_LF = st.slice(starttime=utct(tstart_win - 1800),
                     endtime=utct(tend_win + 1800))
    st_HF = st.slice(starttime=utct(tstart_win - 1800),
                     endtime=utct(tend_win + 1800))

    st_HF.filter('highpass', freq=0.9)
    st_LF.filter('bandpass', freqmin=1./60, freqmax=1.2)

    st_LF.trim(starttime=utct(tstart_win),
               endtime=utct(tend_win))
    st_HF.trim(starttime=utct(tstart_win),
               endtime=utct(tend_win))

    src = instaseis.Source(latitude=90.0-dist,
                           longitude=0.0,
                           depth_in_m=1e3 + np.random.rand(1) * 2.9e4,
                           m_rr=instaseis.source.magnitude2moment(M)[0] *
                                np.sqrt(2.),
                           origin_time=utct(t0)
                           )
    rec = instaseis.Receiver(latitude=90.0, longitude=0.0,
                             network='XB', station='ELYSE', location='58')

    for db, flims in zip([db_HF, db_LF], [(1./10, 4.), (1./100., 1./10.)]):
        st_inst = db.get_seismograms(source=src, receiver=rec,
                                     kind='velocity',
                                     components='Z', dt=0.1)
        st_inst.trim(endtime=st_HF[0].stats.endtime-2)
        st_inst[0].stats.channel = 'BZC'
        #st_inst.filter('lowpass', freq=fmin)
        st_inst.filter('highpass', freq=flims[0])
        st_inst.filter('lowpass', freq=flims[1])
        i0 = int((st_inst[0].stats.starttime - st_LF[0].stats.starttime) * 10)
        for s in (st_LF, st_HF):
            s[0].data[i0:i0+len(st_inst[0].data)] += st_inst[0].data

    return st_LF, st_HF, t0
コード例 #7
0
def create_insta_from_invcat(network, event, database):
    """
    This function creates synthetic data using the given network and
    event information, with the database of instaseis

    :param network: Desired Network, for which the data is generated
    :type  network: obspy.core.inventory.Network

    :param event: Event, for wich the data is generated. The event must have
    stored the moment tensor (e.g. given by glogalcmt.org)
    :type  event: obspy.core.event.Event

    :param database: Link to the database, e.g. the path on your harddrive
    :type  database: str
    """

    db = instaseis.open_db(database)

    tofe = event.origins[0].time
    lat = event.origins[0].latitude
    lon = event.origins[0].longitude
    depth = event.origins[0].depth

    source = instaseis.Source(latitude=lat,
                              longitude=lon,
                              depth_in_m=depth,
                              m_rr=event.MomentTensor.m_rr,
                              m_tt=event.MomentTensor.m_tt,
                              m_pp=event.MomentTensor.m_pp,
                              m_rt=event.MomentTensor.m_rt,
                              m_rp=event.MomentTensor.m_rp,
                              m_tp=event.MomentTensor.m_tp,
                              origin_time=tofe)

    stream = Stream()
    tmp = []
    for station in network:
        rec = instaseis.Receiver(latitude=str(station.latitude),
                                 longitude=str(station.longitude),
                                 network=str(network.code),
                                 station=str(station.code))
        tmp.append(db.get_seismograms(source=source, receiver=rec))

    for x in tmp:
        stream += x

    return stream
コード例 #8
0
def compare_dbs(seed, databases):
    if seed:
        random.seed(seed)
    reference = instaseis.open_db(databases[0])
    others = [instaseis.open_db(_i) for _i in databases[1:]]

    max_depth = reference.info.max_radius - reference.info.min_radius

    while True:
        receiver = instaseis.Receiver(
            latitude=random.random() * 180.0 - 90.0,
            longitude=random.random() * 360.0 - 180.0,
            network="AB",
            station="CED",
        )
        source = instaseis.Source(
            latitude=random.random() * 180.0 - 90.0,
            longitude=random.random() * 360.0 - 180.0,
            depth_in_m=random.random() * max_depth,
            m_rr=4.710000e24 / 1e7,
            m_tt=3.810000e22 / 1e7,
            m_pp=-4.740000e24 / 1e7,
            m_rt=3.990000e23 / 1e7,
            m_rp=-8.050000e23 / 1e7,
            m_tp=-1.230000e24 / 1e7,
            origin_time=obspy.UTCDateTime(2011, 1, 2, 3, 4, 5),
        )

        print("======")

        ref = reference.get_seismograms(source=source,
                                        receiver=receiver,
                                        components="ZNERT")

        oth = [
            _i.get_seismograms(source=source,
                               receiver=receiver,
                               components="ZNERT") for _i in others
        ]

        for _i, _j in zip(oth, others):
            print(_j.info.directory, ":", ref == _i)
            assert ref == _i, str(source) + "\n" + str(receiver)
コード例 #9
0
    def on_open_instaseis_button_released(self):
        cwd = os.getcwd()
        self.folder = str(
            QtGui.QFileDialog.getExistingDirectory(
                self, "choose instaseis database folder", cwd))
        if not self.folder:
            return

        self.instaseis_db = instaseis.open_db(self.folder)
        self.source = instaseis.Source(latitude=self.ui.evla.value(),
                                       longitude=self.ui.evlo.value(),
                                       depth_in_m=self.ui.evdp.value() * 1000.,
                                       m_rr=self.ui.m_rr.value(),
                                       m_tt=self.ui.m_tt.value(),
                                       m_pp=self.ui.m_pp.value(),
                                       m_rt=self.ui.m_rt.value(),
                                       m_rp=self.ui.m_rp.value(),
                                       m_tp=self.ui.m_pp.value())
        self.receiver = instaseis.Receiver(latitude=self.ui.stla.value(),
                                           longitude=self.ui.stlo.value())
        self.stream = self.instaseis_db.get_seismograms(
            source=self.source,
            receiver=self.receiver,
            components=str(self.ui.component.currentText()),
            kind=str(self.ui.motion_type.currentText()),
            remove_source_shift=True)
        self.stream[0].stats.sac = {}
        self.stream[0].stats.sac['o'] = 0.0
        self.stream[0].stats.sac['gcarc'] = geodetics.locations2degrees(
            float(self.ui.evla.value()), float(self.ui.evlo.value()),
            float(self.ui.stla.value()), float(self.ui.stlo.value()))
        self.stream_copy = self.stream.copy()

        time = self.get_time_axis
        self.ui.window_start.setMaximum(time[-1])
        self.ui.window_end.setMaximum(time[-1])
        self.ui.window_start.setValue(time[0])
        self.ui.window_end.setValue(time[-1])
        self.instaseis = True
        self.plot_map()
        self.update()
コード例 #10
0
def _get_npts(db, dt):
    src = instaseis.Source(latitude=90.0,
                           longitude=0.0,
                           depth_in_m=0.0,
                           m_rr=-1.670000e+28 / 1e7,
                           m_tt=3.820000e+27 / 1e7,
                           m_pp=1.280000e+28 / 1e7,
                           m_rt=-7.840000e+27 / 1e7,
                           m_rp=-3.570000e+28 / 1e7,
                           m_tp=1.550000e+27 / 1e7)

    rec = instaseis.Receiver(latitude=10, longitude=10)

    st = db.get_seismograms(src,
                            rec,
                            components='RTZ',
                            kind='displacement',
                            dt=dt,
                            remove_source_shift=True)

    return st[0].stats.npts
コード例 #11
0
ファイル: run_kernel.py プロジェクト: jigel/noisi
def get_ns(wf1, source_conf, insta):

    # Nr of time steps in traces
    if insta:
        # get path to instaseis db
        #ToDo: ugly.
        dbpath = json.load(
            open(os.path.join(source_conf['project_path'],
                              'config.json')))['wavefield_path']
        # open
        db = instaseis.open_db(dbpath)
        # get a test seismogram to determine...
        stest = db.get_seismograms(source=instaseis.ForceSource(latitude=0.0,
                                                                longitude=0.0),
                                   receiver=instaseis.Receiver(latitude=10.,
                                                               longitude=0.0),
                                   dt=1. / source_conf['sampling_rate'])[0]

        nt = stest.stats.npts
        Fs = stest.stats.sampling_rate
    else:
        with WaveField(wf1) as wf1:
            nt = int(wf1.stats['nt'])
            Fs = round(wf1.stats['Fs'], 8)

    # Necessary length of zero padding for carrying out
    # frequency domain correlations/convolutions
    n = next_fast_len(2 * nt - 1)

    # Number of time steps for synthetic correlation
    n_lag = int(source_conf['max_lag'] * Fs)
    if nt - 2 * n_lag <= 0:
        click.secho('Resetting maximum lag to %g seconds: Synthetics are too\
 short for a maximum lag of %g seconds.' % (nt // 2 / Fs, n_lag / Fs))
        n_lag = nt // 2

    n_corr = 2 * n_lag + 1

    return nt, n, n_corr, Fs
コード例 #12
0
ファイル: correlation.py プロジェクト: GeoSinoLMU/noisi
def get_ns(all_conf, insta=False):
    # Nr of time steps in traces
    if insta:
        # get path to instaseis db
        dbpath = all_conf.config['wavefield_path']

        # open
        db = instaseis.open_db(dbpath)
        # get a test seismogram to determine...
        stest = db.get_seismograms(source=instaseis.ForceSource(latitude=0.0,
                                                                longitude=0.),
                                   receiver=instaseis.Receiver(latitude=10.,
                                                               longitude=0.),
                                   dt=1. / all_conf.config
                                   ['wavefield_sampling_rate'])[0]
        nt = stest.stats.npts
        Fs = stest.stats.sampling_rate
    else:
        any_wavefield = glob(os.path.join(all_conf.config['project_path'],
                                          'greens', '*.h5'))[-1]
        with WaveField(any_wavefield) as wf1:
            nt = int(wf1.stats['nt'])
            Fs = round(wf1.stats['Fs'], 8)
            n = wf1.stats['npad']
    # # Necessary length of zero padding
    # # for carrying out frequency domain correlations/convolutions
    # n = next_fast_len(2 * nt - 1)

    # Number of time steps for synthetic correlation
    n_lag = int(all_conf.source_config['max_lag'] * Fs)
    if nt - 2 * n_lag <= 0:
        n_lag_old = n_lag
        n_lag = nt // 2
        warn('Resetting maximum lag to %g seconds:\
 Synthetics are too short for %g seconds.' % (n_lag / Fs, n_lag_old / Fs))

    n_corr = 2 * n_lag + 1

    return nt, n, n_corr, Fs
コード例 #13
0
ファイル: run_wavefieldprep.py プロジェクト: krisjuune/noisi
    def green_from_instaseis(self, station):

        # set some parameters
        lat_sta = station['lat']
        lon_sta = station['lon']
        lat_sta = geograph_to_geocent(float(lat_sta))
        lon_sta = float(lon_sta)
        rec = instaseis.Receiver(latitude=lat_sta, longitude=lon_sta)
        point_f = float(self.config['wavefield_point_force'])

        channel = self.config['wavefield_channel']
        station_id = station['net'] + '.' + station['sta'] + '..MX' + channel

        if self.config['verbose']:
            print(station_id)

        if channel == 'Z':
            c_index = 0
        elif channel == 'R':
            c_index = 1
        elif channel == 'T':
            c_index = 2
        else:
            raise ValueError("Unknown channel: %s, choose R, T, Z"
                             % channel)

        # initialize the file
        f_out = os.path.join(self.wf_path, station_id + '.h5')

        with h5py.File(f_out, "w") as f:

            # DATASET NR 1: STATS
            stats = f.create_dataset('stats', data=(0,))
            stats.attrs['reference_station'] = station['sta']
            stats.attrs['data_quantity'] = self.data_quantity
            stats.attrs['ntraces'] = self.ntraces
            stats.attrs['Fs'] = self.Fs
            stats.attrs['nt'] = int(self.npts)
            stats.attrs['npad'] = self.npad
            if self.fdomain:
                stats.attrs['fdomain'] = True
            else:
                stats.attrs['fdomain'] = False

            # DATASET NR 2: Source grid
            f.create_dataset('sourcegrid', data=self.sourcegrid)

            # DATASET Nr 3: Seismograms itself
            if self.fdomain:
                traces = f.create_dataset('data', (self.ntraces,
                                                   self.npts + 1),
                                          dtype=np.complex64)
            else:
                traces = f.create_dataset('data', (self.ntraces, self.npts),
                                          dtype=np.float32)

            for i in range(self.ntraces):
                if i % 1000 == 0 and i > 0 and self.config['verbose']:
                    print('Converted %g of %g traces' % (i, self.ntraces))

                lat_src = geograph_to_geocent(self.sourcegrid[1, i])
                lon_src = self.sourcegrid[0, i]

                fsrc = instaseis.ForceSource(latitude=lat_src,
                                             longitude=lon_src, f_r=point_f)
                if self.config['synt_data'] == 'DIS':
                    values = self.db.get_seismograms(source=fsrc,
                                                     receiver=rec,
                                                     dt=1. / self.Fs)

                elif self.config['synt_data'] == 'VEL':
                    values = self.db.get_seismograms(source=fsrc,
                                                     receiver=rec,
                                                     dt=1. / self.Fs,
                                                     kind='velocity')
                elif self.config['synt_data'] == 'ACC':
                    values = self.db.get_seismograms(source=fsrc,
                                                     receiver=rec,
                                                     dt=1. / self.Fs,
                                                     kind='acceleration')
                else:
                    raise ValueError('Unknown data quantity. \
Choose DIS, VEL or ACC in configuration.')
                if channel in ['R', 'T']:
                    baz = gps2dist_azimuth(lat_src, lon_src,
                                           lat_sta, lon_sta)[2]
                    values.rotate('NE->RT', baz)

                if self.filter is not None:
                    trace = lfilter(*self.filter, x=values[c_index].data)
                else:
                    trace = values[c_index].data

                if self.fdomain:
                    trace_fd = np.fft.rfft(trace[0: self.npts],
                                           n=self.npad)
                    traces[i, :] = trace_fd
                else:
                    traces[i, :] = trace[0: self.npts]
        return()
コード例 #14
0
            print('delete channel ' + tr.stats['channel'])
    else:
        for tr in seis.select(channel='BX90*'):
            seis.remove(tr)
            print('delete channel ' + tr.stats['channel'])

    #While we are at it there is a mistake in data_processing_2 where the stats of seis[0] (vertical component)  get overwritten by those of a horizontal component... fixing this here.
    seis[0].stats['channel'] = 'BHZ'
    #   print(seis[0].stats['channel'])
    #Calculate receiver at 90 distance
    origin = geopy.Point(srcdict['latitude'], srcdict['longitude'])
    destination = VincentyDistance(kilometers=90 *
                                   (6371 * np.pi / 180.)).destination(
                                       origin, seis[0].stats['az'])
    receiver = instaseis.Receiver(latitude=destination.latitude,
                                  longitude=destination.longitude,
                                  network=seis[0].stats['network'],
                                  station=seis[0].stats['station'])

    eventtime = seis[0].stats['eventtime']
    starttime = seis[0].stats['starttime']
    endtime = seis[0].stats['endtime']
    st = db.get_seismograms(source=source,
                            receiver=receiver,
                            kind='displacement',
                            dt=0.1)
    # Rotate synthetics
    stE = st.select(channel='BXE')
    stN = st.select(channel='BXN')
    stZ = st.select(channel='BXZ')
    [stRtmp,
     stTtmp] = obspy.signal.rotate.rotate_ne_rt(stN[0].data, stE[0].data,
コード例 #15
0
ファイル: correlation.py プロジェクト: GeoSinoLMU/noisi
def compute_correlation(input_files, all_conf, nsrc, all_ns, taper,
                        insta=False):
    """
    Compute noise cross-correlations from two .h5 'wavefield' files.
    Noise source distribution and spectrum is given by starting_model.h5
    It is assumed that noise sources are delta-correlated in space.

    Metainformation: Include the reference station names for both stations
    from wavefield files, if possible. Do not include geographic information
    from .csv file as this might be error-prone. Just add the geographic
    info later if needed.
    """

    wf1, wf2 = input_files
    ntime, n, n_corr, Fs = all_ns
    ntraces = nsrc.src_loc[0].shape[0]
    correlation = np.zeros(n_corr)

    if insta:
        # open database
        dbpath = all_conf.config['wavefield_path']

        # open
        db = instaseis.open_db(dbpath)
        # get receiver locations
        station1 = wf1[0]
        station2 = wf2[0]
        lat1 = geograph_to_geocent(float(wf1[2]))
        lon1 = float(wf1[3])
        rec1 = instaseis.Receiver(latitude=lat1, longitude=lon1)
        lat2 = geograph_to_geocent(float(wf2[2]))
        lon2 = float(wf2[3])
        rec2 = instaseis.Receiver(latitude=lat2, longitude=lon2)
    else:
        wf1 = WaveField(wf1)
        wf2 = WaveField(wf2)
        station1 = wf1.stats['reference_station']
        station2 = wf2.stats['reference_station']

        # Make sure all is consistent
        if False in (wf1.sourcegrid[1, 0:10] == wf2.sourcegrid[1, 0:10]):
            raise ValueError("Wave fields not consistent.")

        if False in (wf1.sourcegrid[1, -10:] == wf2.sourcegrid[1, -10:]):
            raise ValueError("Wave fields not consistent.")

        if False in (wf1.sourcegrid[0, -10:] == nsrc.src_loc[0, -10:]):
            raise ValueError("Wave field and source not consistent.")

    # Loop over source locations
    print_each_n = max(5, round(max(ntraces // 5, 1), -1))
    for i in range(ntraces):

        # noise source spectrum at this location
        S = nsrc.get_spect(i)

        if S.sum() == 0.:
            # If amplitude is 0, continue. (Spectrum has 0 phase anyway.)
            continue

        if insta:
            # get source locations
            lat_src = geograph_to_geocent(nsrc.src_loc[1, i])
            lon_src = nsrc.src_loc[0, i]
            fsrc = instaseis.ForceSource(latitude=lat_src,
                                         longitude=lon_src,
                                         f_r=1.e12)
            Fs = all_conf.config['wavefield_sampling_rate']
            s1 = db.get_seismograms(source=fsrc, receiver=rec1,
                                    dt=1. / Fs)[0].data * taper
            s2 = db.get_seismograms(source=fsrc, receiver=rec2,
                                    dt=1. / Fs)[0].data * taper
            s1 = np.ascontiguousarray(s1)
            s2 = np.ascontiguousarray(s2)
            spec1 = np.fft.rfft(s1, n)
            spec2 = np.fft.rfft(s2, n)

        else:
            if not wf1.fdomain:
                # read Green's functions
                s1 = np.ascontiguousarray(wf1.data[i, :] * taper)
                s2 = np.ascontiguousarray(wf2.data[i, :] * taper)
                # Fourier transform for greater ease of convolution
                spec1 = np.fft.rfft(s1, n)
                spec2 = np.fft.rfft(s2, n)
            else:
                spec1 = np.ascontiguousarray(wf1.data[i, :])
                spec2 = np.ascontiguousarray(wf2.data[i, :])

        # convolve G1G2
        g1g2_tr = np.multiply(np.conjugate(spec1), spec2)

        # convolve noise source
        c = np.multiply(g1g2_tr, S)

        # transform back
        correlation += my_centered(np.fft.fftshift(np.fft.irfft(c, n)),
                                   n_corr) * nsrc.surf_area[i]
        # occasional info
        if i % print_each_n == 0 and all_conf.config['verbose']:
            print("Finished {} of {} source locations.".format(i, ntraces))
# end of loop over all source locations #######################################
    return(correlation, station1, station2)
コード例 #16
0
# From this you can already glance a couple of aspects of the database used for this tutorial:
#
# * uses anisotropic prem as its 1D model
# * is accurate for periods down to 10 seconds
# * includes vertical and horizontal components
# * sources can have depths ranging from 0 to 700 km
# * five hour long seismograms
#
# To avoid delays that become relevant when requesting very many seismograms, IRIS also offers the databases for download.

# ### Receivers and Sources
#
# Instaseis calculates seismograms for any source and receiver pair. A receiver has coordinates and optionally network and station codes. Using a reciprocal database, all receivers are assumed to be at the same depth, i.e. usually at the Earth surface.

rec = instaseis.Receiver(latitude=44.06238,
                         longitude=10.59698,
                         network="IV",
                         station="BDI")
print(rec)

# Sources are naturally a bit more complex and Instaseis offers a variety of ways to define them. A straightforward way for earthquakes is to pass coordinates, moment as well as strike, dip and rake.

src = instaseis.Source.from_strike_dip_rake(latitude=27.77,
                                            longitude=85.37,
                                            depth_in_m=12000.0,
                                            M0=1e+21,
                                            strike=32.,
                                            dip=62.,
                                            rake=90.)
print(src)

# Note that origin time was not provided and hence defaults to 1970. A non double-couple source can directly be specified in terms of its moment tensor (note that instaseis uses SI units, i.e. NM, while GCMT uses dyn cm).
コード例 #17
0
def addSynthetics(name, clean):
    print(instaseis.__path__)

    # Input directory with PICKLE data as argument
    dir = 'Data/' + name + '/'

    # Load database with Greens functions
    db = instaseis.open_db("/raid2/sc845/Instaseis/DB/10s_PREM_ANI_FORCES/")

    # Directory needs to contain a CMT source text file
    with open(dir + 'cmtsource.txt', 'r') as inf:
        srcdict = eval(inf.read())

    # Unpack dictionary
    latitude = srcdict['latitude']
    longitude = srcdict['longitude']
    depth_in_m = srcdict['depth'] * 1.e3
    m_rr = srcdict['Mrr'] / 1E7
    m_tt = srcdict['Mtt'] / 1E7
    m_pp = srcdict['Mpp'] / 1E7
    m_rt = srcdict['Mrt'] / 1E7
    m_rp = srcdict['Mrp'] / 1E7
    m_tp = srcdict['Mtp'] / 1E7
    origin_time = obspy.UTCDateTime(srcdict['year'], srcdict['month'],
                                    srcdict['day'], srcdict['hour'],
                                    srcdict['min'], srcdict['sec'],
                                    srcdict['msec'])

    # Read in source
    source = instaseis.Source(latitude=latitude,
                              longitude=longitude,
                              depth_in_m=depth_in_m,
                              m_rr=m_rr,
                              m_tt=m_tt,
                              m_pp=m_pp,
                              m_rt=m_rt,
                              m_rp=m_rp,
                              m_tp=m_tp,
                              origin_time=origin_time)

    # Read and loop through station list
    stalist = glob.glob(dir + '/*PICKLE')

    for s in range(len(stalist)):
        seis = read(stalist[s], format='PICKLE')

        for tr in seis.select(channel='BX*'):
            seis.remove(tr)

        # Fixing some old mistake (not sure if still present, check with Sanne)
        seis[0].stats['channel'] = 'BHZ'
        print(seis[0].stats['channel'])
        receiver = instaseis.Receiver(latitude=seis[0].stats['stla'],
                                      longitude=seis[0].stats['stlo'],
                                      network=seis[0].stats['network'],
                                      station=seis[0].stats['station'])

        start = seis[0].stats['starttime']
        end = seis[0].stats['endtime']
        st = db.get_seismograms(source=source,
                                receiver=receiver,
                                kind='displacement',
                                dt=0.1)

        # Rotate synthetics
        stE = st.select(channel='BXE')
        stN = st.select(channel='BXN')
        stZ = st.select(channel='BXZ')

        [stRtmp,
         stTtmp] = obspy.signal.rotate.rotate_ne_rt(stN[0].data, stE[0].data,
                                                    seis[0].stats['baz'])

        stR = stN[0].copy()
        stR.stats['channel'] = 'BXR'
        stR.data = stRtmp
        stT = stN[0].copy()
        stT.stats['channel'] = 'BXT'
        stT.data = stTtmp

        seis += stR
        seis += stT
        seis += stZ

        for x in seis:
            print(x.stats['channel'])

        # Overwrites previous PICKLE with synthetics included
        seis.write(stalist[s], format='PICKLE')

    print('Synthetics for this event have been successfully added')
コード例 #18
0
print(source)
# Read and loop through stationlist
stalist = glob.glob(dr + '*PICKLE')

for s in range(0, len(stalist)):
    print(str(s) + '/' + str(len(stalist)) + ' of ' + event)
    seis = read(stalist[s], format='PICKLE')

    for tr in seis.select(channel='BX*'):
        seis.remove(tr)

    #While we are at it there is a mistake in data_processing_2 where the stats of seis[0] (vertical component)  get overwritten by those of a horizontal component... fixing this here.
    seis[0].stats['channel'] = 'BHZ'
    #    print(seis[0].stats['channel'])
    receiver = instaseis.Receiver(latitude=seis[0].stats['stla'],
                                  longitude=seis[0].stats['stlo'],
                                  network=seis[0].stats['network'],
                                  station=seis[0].stats['station'])

    eventtime = seis[0].stats['eventtime']
    starttime = seis[0].stats['starttime']
    endtime = seis[0].stats['endtime']
    st = db.get_seismograms(source=source,
                            receiver=receiver,
                            kind='displacement',
                            dt=0.1)  # displacement, velocity, acceleration
    # Rotate synthetics
    stE = st.select(channel='BXE')
    stN = st.select(channel='BXN')
    stZ = st.select(channel='BXZ')
    [stRtmp,
     stTtmp] = obspy.signal.rotate.rotate_ne_rt(stN[0].data, stE[0].data,
コード例 #19
0
m_pp = 3.98e13
planet_radius = 1565.0
#planet_radius = 6371.0
distaz = gps2dist_azimuth(lat1=evla, lon1=evlo, lat2=stla, lon2=stlo, a=planet_radius*1000.0, f=0.0) # no flattening
gcarc_m = distaz[0]
dist_km = gcarc_m / 1000.0


#get instaseis seismogram
instaseis_db = instaseis.open_db(insta_db_name)
source = instaseis.Source(latitude=evla,
                          longitude=evlo,
                          depth_in_m=evdp*1000.,
                          m_rr = m_rr,
                          m_pp = m_rr)
receiver = instaseis.Receiver(latitude=stla,
                              longitude=stlo)
stream = instaseis_db.get_seismograms(source=source,
                                      receiver=receiver,
                                      components=components,
                                      kind = kind,
                                      remove_source_shift=True)

stream = stream.slice(stream[0].stats.starttime + window_min,
                      stream[0].stats.starttime + window_max)
#stream.plot()

time = np.linspace(window_min,
                   window_min+(stream[0].stats.npts * stream[0].stats.delta),
                   stream[0].stats.npts)

#make ensemble of dispersion curves w/ different noise realizations
コード例 #20
0
    inv = SS_MTI.DataGetter.read_inv(inv_path=f_in["DATA"]["inventory_filepath"])  # Inventory file
    cat = SS_MTI.DataGetter.read_cat(cat_path=f_in["DATA"]["catalog_filepath"])  # Catalog file
    events = SS_MTI.DataGetter.read_events_from_cat(
        event_params=f_in["EVENTS"],
        cat=cat,
        inv=inv,
        local_folder=f_in["DATA"]["waveform_filepath"],
        host_name=f_in["SERVER"]["host_name"],
        user_name=f_in["SERVER"]["username"],
        remote_folder=f_in["SERVER"]["remote_folder"],
        save_file_name=cat_save_name,
    )

    event = event[0]
    rec = instaseis.Receiver(
        latitude=f_in["PARAMETERS"]["RECEIVER"]["la_r"],
        longitude=f_in["PARAMETERS"]["RECEIVER"]["lon_r"],
    )

    ## Step 3:
    """ Define forward modeler """

    forward_method = f_in["FORWARD"]["METHOD"]
    forward_dict = f_in["FORWARD"][forward_method]

    if forward_method == "INSTASEIS":
        fwd = SS_MTI.Forward.Instaseis(
            instaseis_db=instaseis.open_db(forward_dict["VELOC"]),
            taup_model=forward_dict["VELOC_taup"],
            or_time=event.origin_time,
            dt=event.delta,
            start_cut=f_in["PARAMETERS"]["start_cut"],
コード例 #21
0
datadir = "./" + evnum + "/"
fils = os.listdir(datadir)
for fil in fils:
    print(fil)

    ## Get station information
    mat = spio.loadmat(datadir + fil, squeeze_me=True)  # load *.mat files
    latitude = mat['traces'][0]['latitude']
    longitude = mat['traces'][0]['longitude']
    network = mat['traces'][0]['network']
    station = mat['traces'][0]['station']
    elevation = mat['traces'][0]['elevation']

    # CALCULATE SYNTHETICS
    rec = instaseis.Receiver(latitude=latitude,
                             longitude=longitude,
                             network=network,
                             station=station)
    #     tr = db.get_seismograms(source=cat_ev, receiver=rec, components=["Z","R","T"], kind='velocity')
    tr = db.get_seismograms(source=cat_ev,
                            receiver=rec,
                            components=["Z", "R", "T"],
                            kind='displacement')

    mat_synth = mat
    channels = ["BHZ", "BHR", "BHT"]
    for icomp in np.arange(0, 3):
        channel = channels[icomp]
        sampleCount = len(tr[icomp].data)
        sampleRate = 1. / db.info.dt

        mat_synth['traces'][icomp]['channel'] = channel
コード例 #22
0
def test_seismogram_extraction(syngine_client):
    """
    Test the seismogram extraction from local and syngine databases.
    """
    # syngine and local database.
    s_db = syngine_client
    l_db = instaseis.open_db(db_path)

    source = instaseis.Source(
        latitude=4.0,
        longitude=3.0,
        depth_in_m=0,
        m_rr=4.71e17,
        m_tt=3.81e17,
        m_pp=-4.74e17,
        m_rt=3.99e17,
        m_rp=-8.05e17,
        m_tp=-1.23e17,
    )

    receiver = instaseis.Receiver(latitude=10.0,
                                  longitude=20.0,
                                  depth_in_m=None)

    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": ["Z", "N", "E", "R", "T"],
    }
    _compare_streams(s_db, l_db, kwargs)

    # Test velocity and acceleration.
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": ["Z", "N", "E", "R", "T"],
        "kind": "velocity",
    }
    _compare_streams(s_db, l_db, kwargs)
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": ["Z", "N", "E", "R", "T"],
        "kind": "acceleration",
    }
    _compare_streams(s_db, l_db, kwargs)

    # Test remove source shift.
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": ["Z", "N", "E", "R", "T"],
        "remove_source_shift": False,
    }
    _compare_streams(s_db, l_db, kwargs)

    # Test resampling.
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": ["Z", "N", "E", "R", "T"],
        "dt": 1.0,
        "kernelwidth": 6,
    }
    _compare_streams(s_db, l_db, kwargs)

    # Force sources currently raise an error.
    source = instaseis.ForceSource(
        latitude=89.91,
        longitude=0.0,
        depth_in_m=12000,
        f_r=1.23e10,
        f_t=2.55e10,
        f_p=1.73e10,
    )
    kwargs = {"source": source, "receiver": receiver}
    with pytest.raises(ValueError) as e:
        _compare_streams(s_db, l_db, kwargs)

    assert e.value.args[0] == (
        "The Syngine Instaseis client does currently not "
        "support force sources. You can still download "
        "data from the Syngine service for force "
        "sources manually.")

    # Test less components and a latitude of 45 degrees to have the maximal
    # effect of geocentric vs geographic coordinates.
    source = instaseis.Source(
        latitude=45.0,
        longitude=3.0,
        depth_in_m=0,
        m_rr=4.71e17,
        m_tt=3.81e17,
        m_pp=-4.74e17,
        m_rt=3.99e17,
        m_rp=-8.05e17,
        m_tp=-1.23e17,
    )

    receiver = instaseis.Receiver(latitude=-45.0,
                                  longitude=20.0,
                                  depth_in_m=None)
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": ["Z", "N", "E", "R", "T"],
    }
    _compare_streams(s_db, l_db, kwargs)
コード例 #23
0
ファイル: run_kernel.py プロジェクト: jigel/noisi
def g1g2_kern(wf1str, wf2str, kernel, adjt, src, source_conf, insta):

    measr_conf = json.load(
        open(os.path.join(source_conf['source_path'], 'measr_config.json')))

    bandpass = measr_conf['bandpass']

    if bandpass == None:
        filtcnt = 1
    elif type(bandpass) == list:
        if type(bandpass[0]) != list:
            filtcnt = 1
        else:
            filtcnt = len(bandpass)

    ntime, n, n_corr, Fs = get_ns(wf1str, source_conf, insta)
    # use a one-sided taper: The seismogram probably has a non-zero end,
    # being cut off whereever the solver stopped running.
    taper = cosine_taper(ntime, p=0.01)
    taper[0:ntime // 2] = 1.0

    ########################################################################
    # Prepare filenames and adjoint sources
    ########################################################################

    filenames = []
    adjt_srcs = []
    adjt_srcs_cnt = 0

    for ix_f in range(filtcnt):

        filename = kernel + '.{}.npy'.format(ix_f)
        filenames.append(filename)
        #if os.path.exists(filename):
        #   continue

        f = Stream()
        for a in adjt:
            adjtfile = a + '*.{}.sac'.format(ix_f)
            adjtfile = glob(adjtfile)
            try:
                f += read(adjtfile[0])[0]
                f[-1].data = my_centered(f[-1].data, n_corr)
                adjt_srcs_cnt += 1
            except IndexError:
                print('No adjoint source found: {}\n'.format(a))
                break

        adjt_srcs.append(f)


########################################################################
# Compute the kernels
########################################################################

    with NoiseSource(src) as nsrc:

        ntraces = nsrc.src_loc[0].shape[0]

        if insta:
            # open database
            dbpath = json.load(
                open(os.path.join(source_conf['project_path'],
                                  'config.json')))['wavefield_path']
            # open and determine Fs, nt
            db = instaseis.open_db(dbpath)
            # get receiver locations
            lat1 = geograph_to_geocent(float(wf1[2]))
            lon1 = float(wf1[3])
            rec1 = instaseis.Receiver(latitude=lat1, longitude=lon1)
            lat2 = geograph_to_geocent(float(wf2[2]))
            lon2 = float(wf2[3])
            rec2 = instaseis.Receiver(latitude=lat2, longitude=lon2)

        else:
            wf1 = WaveField(wf1str)
            wf2 = WaveField(wf2str)

        kern = np.zeros((filtcnt, ntraces, len(adjt)))

        ########################################################################
        # Loop over locations
        ########################################################################
        for i in range(ntraces):

            # noise source spectrum at this location
            # For the kernel, this contains only the basis functions of the
            # spectrum without weights; might still be location-dependent,
            # for example when constraining sensivity to ocean
            S = nsrc.get_spect(i)

            if S.sum() == 0.:
                # The spectrum has 0 phase so only checking absolute value here
                continue

            ####################################################################
            # Get synthetics
            ####################################################################
            if insta:
                # get source locations
                lat_src = geograph_to_geocent(nsrc.src_loc[1, i])
                lon_src = nsrc.src_loc[0, i]
                fsrc = instaseis.ForceSource(latitude=lat_src,
                                             longitude=lon_src,
                                             f_r=1.e12)

                s1 = np.ascontiguousarray(
                    db.get_seismograms(
                        source=fsrc,
                        receiver=rec1,
                        dt=1. / source_conf['sampling_rate'])[0].data * taper)
                s2 = np.ascontiguousarray(
                    db.get_seismograms(
                        source=fsrc,
                        receiver=rec2,
                        dt=1. / source_conf['sampling_rate'])[0].data * taper)

            else:
                s1 = np.ascontiguousarray(wf1.data[i, :] * taper)
                s2 = np.ascontiguousarray(wf2.data[i, :] * taper)

            spec1 = np.fft.rfft(s1, n)
            spec2 = np.fft.rfft(s2, n)

            g1g2_tr = np.multiply(np.conjugate(spec1), spec2)
            c = np.multiply(g1g2_tr, S)

            #######################################################################
            # Get Kernel at that location
            #######################################################################
            corr_temp = my_centered(np.fft.ifftshift(np.fft.irfft(c, n)),
                                    n_corr)

            #######################################################################
            # Apply the 'adjoint source'
            #######################################################################
            for ix_f in range(filtcnt):
                f = adjt_srcs[ix_f]

                if f == None:
                    continue
                for j in range(len(f)):
                    delta = f[j].stats.delta

                    kern[ix_f, i, j] = np.dot(corr_temp, f[j].data) * delta

                    #elif measr_conf['mtype'] in ['envelope']:
                    #    if j == 0:
                    #        corr_temp_h = corr_temp
                    #        print(corr_temp_h)
                    #    if j == 1:
                    #        corr_temp_h = hilbert(corr_temp)
                    #        print(corr_temp_h)
                    #
                    #    kern[ix_f,i,j] = np.dot(corr_temp,f[j].data) * delta

            if i % 50000 == 0:
                print("Finished {} source locations.".format(i))

    if not insta:
        wf1.file.close()
        wf2.file.close()

    for ix_f in range(filtcnt):
        filename = filenames[ix_f]
        if kern[ix_f, :, :].sum() != 0:
            np.save(filename, kern[ix_f, :, :])
    return ()
コード例 #24
0
import matplotlib.pyplot as plt
from datetime import datetime
plt.rcParams['figure.figsize'] = (12, 8)
db = instaseis.open_db(
    "http://instaseis.ethz.ch/icy_ocean_worlds/Tit124km-33pNH-hQ_2s")
ntwk = 'ST'

# Define M0 from shear modulus (mu), area of rupture along the fault (A),
# and the average slip along the fault (D).
# Adapted from Stein & Wysession (2003).
mu = 2.0e+9
A = 6.66e+8
D = 0.5
Mzero = mu * A * D

R01=instaseis.Receiver(latitude=-10.0, longitude=-165.0, network=ntwk,\
  station='01')
R02=instaseis.Receiver(latitude=-8.8, longitude=-167.4, network=ntwk,\
  station='02')
R03=instaseis.Receiver(latitude=-7.6, longitude=-169.8, network=ntwk,\
  station='03')
R04=instaseis.Receiver(latitude=-6.4, longitude=-172.3, network=ntwk,\
  station='04')
R05=instaseis.Receiver(latitude=-5.2, longitude=-174.7, network=ntwk,\
  station='05')
R06=instaseis.Receiver(latitude=-3.9, longitude=-177.1, network=ntwk,\
  station='06')
R07=instaseis.Receiver(latitude=-2.7, longitude=-179.5, network=ntwk,\
  station='07')
R08=instaseis.Receiver(latitude=-1.5, longitude=178.1, network=ntwk,\
  station='08')
R09=instaseis.Receiver(latitude=-0.3, longitude=175.6, network=ntwk,\
コード例 #25
0
    def love_pick(self,
                  T_trace,
                  la_s,
                  lo_s,
                  depth,
                  save_directory,
                  time_at_rec,
                  npts,
                  filter=True,
                  plot_modus=False):
        if plot_modus == True:
            dir_L = save_directory + '/Love_waves'
            if not os.path.exists(dir_L):
                os.makedirs(dir_L)
        Love_st = Stream()

        evla = la_s
        evlo = lo_s

        rec = instaseis.Receiver(latitude=self.prior['la_r'],
                                 longitude=self.prior['lo_r'])

        dist, az, baz = gps2dist_azimuth(lat1=evla,
                                         lon1=evlo,
                                         lat2=self.prior['la_r'],
                                         lon2=self.prior['lo_r'],
                                         a=self.prior['radius'],
                                         f=0)

        # For now I am just using the Z-component, because this will have the strongest Rayleigh signal:
        T_comp = T_trace.copy()

        if plot_modus == True:
            T_comp.plot(outfile=dir_L + '/sw_entire_waveform.pdf')
        phases = self.get_L_phases(time_at_rec)

        for i in range(len(phases)):
            if plot_modus == True:
                dir_phases = dir_L + '/%s' % phases[i]['name']
                if not os.path.exists(dir_phases):
                    os.makedirs(dir_phases)
            trial = T_trace.copy()
            if filter == True:
                trial.detrend(type="demean")
                trial.filter('highpass',
                             freq=phases[i]['fmin'],
                             zerophase=True)
                trial.filter('lowpass', freq=phases[i]['fmax'], zerophase=True)
                trial.detrend()

            if plot_modus == True:
                start_vline = int(
                    (phases[i]['starttime'](dist, depth).timestamp -
                     time_at_rec.timestamp) / trial.stats.delta)
                end_vline = int((phases[i]['endtime'](dist, depth).timestamp -
                                 time_at_rec.timestamp) / trial.stats.delta)
                plt.figure(1)
                ax = plt.subplot(111)
                plt.plot(trial.data, alpha=0.5)
                ymin, ymax = ax.get_ylim()
                # plt.plot(trial.data)
                plt.vlines([start_vline, end_vline], ymin, ymax)
                plt.xlabel(time_at_rec.strftime('%Y-%m-%dT%H:%M:%S + sec'))
                plt.savefig(dir_phases + '/sw_with_Love_windows.pdf')
                plt.tight_layout()
                plt.close()

            if filter == True:
                trial.detrend(type="demean")
                env = envelope(trial.data)
                trial.data = env
                trial.trim(starttime=phases[i]['starttime'](dist, depth),
                           endtime=phases[i]['endtime'](dist, depth))
            else:
                env = trial.data
            if plot_modus == True:
                plt.figure(2)
                plt.plot(trial, label='%s' % phases[i]['name'])
                plt.legend()
                plt.tight_layout()
                plt.savefig(dir_phases +
                            '/Love_envelope_filter_%s.pdf' % phases[i]['name'])
                plt.close()

            zero_trace = Trace(np.zeros(npts),
                               header={
                                   "starttime": phases[i]['starttime'](dist,
                                                                       depth),
                                   'delta': trial.meta.delta,
                                   "station": trial.meta.station,
                                   "network": trial.meta.network,
                                   "location": trial.meta.location,
                                   "channel": phases[i]['name']
                               })

            total_trace = zero_trace.__add__(trial,
                                             method=0,
                                             interpolation_samples=0,
                                             fill_value=trial.data,
                                             sanity_checks=False)

            Love_st.append(total_trace)
        if plot_modus == True:
            plt.figure(3)
            plt.plot(Love_st.traces[0].data,
                     label='%s' % Love_st.traces[0].meta.channel)
            plt.plot(Love_st.traces[1].data,
                     label='%s' % Love_st.traces[1].meta.channel)
            plt.plot(Love_st.traces[2].data,
                     label='%s' % Love_st.traces[2].meta.channel)
            plt.plot(Love_st.traces[3].data,
                     label='%s' % Love_st.traces[3].meta.channel)
            plt.legend()
            plt.tight_layout()
            plt.savefig(dir_L + '/diff_Love_freq.pdf')
            plt.close()
        return Love_st
コード例 #26
0
def test_finite_source_retrieval(reciprocal_clients, usgs_param):
    """
    Tests if the finite sources requested from the server are identical to
    the one requested with the local instaseis client with some required
    tweaks.
    """
    client = reciprocal_clients

    db = instaseis.open_db(client.filepath)

    basic_parameters = {
        "receiverlongitude": 11,
        "receiverlatitude": 22,
        "receiverdepthinmeters": 0,
        "format": "miniseed"
    }

    with io.open(usgs_param, "rb") as fh:
        body = fh.read()

    # default parameters
    params = copy.deepcopy(basic_parameters)
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.read(request.buffer)
    for tr in st_server:
        assert tr.stats._format == "MSEED"

    # Parse the finite source.
    fs = _parse_finite_source(usgs_param)
    rec = instaseis.Receiver(latitude=22,
                             longitude=11,
                             network="XX",
                             station="SYN",
                             location="SE")

    st_db = db.get_seismograms_finite_source(sources=fs, receiver=rec)
    # The origin time is the time of the first sample in the route.
    for tr in st_db:
        # Cut away the first ten samples as they have been previously added.
        tr.data = tr.data[10:]
        tr.stats.starttime = obspy.UTCDateTime(1900, 1, 1)

    for tr_db, tr_server in zip(st_db, st_server):
        # Sample spacing is very similar but not equal due to floating point
        # accuracy.
        np.testing.assert_allclose(tr_server.stats.delta, tr_db.stats.delta)
        tr_server.stats.delta = tr_db.stats.delta
        del tr_server.stats._format
        del tr_server.stats.mseed

        assert tr_db.stats == tr_server.stats
        np.testing.assert_allclose(tr_db.data, tr_server.data)

    # Once again but this time request a SAC file.
    params = copy.deepcopy(basic_parameters)
    params["format"] = "saczip"
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.Stream()
    zip_obj = zipfile.ZipFile(request.buffer)
    for name in zip_obj.namelist():
        st_server += obspy.read(io.BytesIO(zip_obj.read(name)))
    for tr in st_server:
        assert tr.stats._format == "SAC"

    for tr_db, tr_server in zip(st_db, st_server):
        # Sample spacing is very similar but not equal due to floating point
        # accuracy.
        np.testing.assert_allclose(tr_server.stats.delta, tr_db.stats.delta)
        tr_server.stats.delta = tr_db.stats.delta
        del tr_server.stats._format
        del tr_server.stats.sac

        assert tr_db.stats == tr_server.stats
        np.testing.assert_allclose(tr_db.data, tr_server.data)

    # One with a label.
    params = copy.deepcopy(basic_parameters)
    params["label"] = "random_things"
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200

    cd = request.headers["Content-Disposition"]
    assert cd.startswith("attachment; filename=random_things_")
    assert cd.endswith(".mseed")

    # One simulating a crash in the underlying function.
    params = copy.deepcopy(basic_parameters)

    with mock.patch("instaseis.database_interfaces.base_instaseis_db"
                    ".BaseInstaseisDB.get_seismograms_finite_source") as p:
        p.side_effect = ValueError("random crash")
        request = client.fetch(_assemble_url('finite_source', **params),
                               method="POST",
                               body=body)

    assert request.code == 400
    assert request.reason == ("Could not extract finite source seismograms. "
                              "Make sure, the parameters are valid, and the "
                              "depth settings are correct.")

    # Simulating a logic error that should not be able to happen.
    params = copy.deepcopy(basic_parameters)
    with mock.patch("instaseis.database_interfaces.base_instaseis_db"
                    ".BaseInstaseisDB.get_seismograms_finite_source") as p:
        # Longer than the database returned stream thus the endtime is out
        # of bounds.
        st = obspy.read()

        p.return_value = st
        request = client.fetch(_assemble_url('finite_source', **params),
                               method="POST",
                               body=body)

    assert request.code == 500
    assert request.reason.startswith("Endtime larger than the extracted "
                                     "endtime")

    # One more with resampling parameters and different units.
    params = copy.deepcopy(basic_parameters)
    # We must have a sampling rate that cleanly fits in the existing one,
    # otherwise we cannot fake the cutting.
    dt_new = 24.724845445855724 / 10
    params["dt"] = dt_new
    params["kernelwidth"] = 2
    params["units"] = "acceleration"

    st_db = db.get_seismograms_finite_source(sources=fs,
                                             receiver=rec,
                                             dt=dt_new,
                                             kernelwidth=2,
                                             kind="acceleration")
    # The origin time is the time of the first sample in the route.
    for tr in st_db:
        # Cut away the first ten samples as they have been previously added.
        tr.data = tr.data[100:]
        tr.stats.starttime = obspy.UTCDateTime(1900, 1, 1)

    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.read(request.buffer)

    # Cut some parts in the middle to avoid any potential boundary effects.
    st_db.trim(obspy.UTCDateTime(1900, 1, 1, 0, 4),
               obspy.UTCDateTime(1900, 1, 1, 0, 14))
    st_server.trim(obspy.UTCDateTime(1900, 1, 1, 0, 4),
                   obspy.UTCDateTime(1900, 1, 1, 0, 14))

    for tr_db, tr_server in zip(st_db, st_server):
        # Sample spacing and times are very similar but not identical due to
        # floating point inaccuracies in the arithmetics.
        np.testing.assert_allclose(tr_server.stats.delta, tr_db.stats.delta)
        np.testing.assert_allclose(tr_server.stats.starttime.timestamp,
                                   tr_db.stats.starttime.timestamp)
        tr_server.stats.delta = tr_db.stats.delta
        tr_server.stats.starttime = tr_db.stats.starttime
        del tr_server.stats._format
        del tr_server.stats.mseed
        del tr_server.stats.processing
        del tr_db.stats.processing

        np.testing.assert_allclose(tr_server.stats.delta, tr_db.stats.delta)

        assert tr_db.stats == tr_server.stats
        np.testing.assert_allclose(tr_db.data,
                                   tr_server.data,
                                   rtol=1E-7,
                                   atol=tr_db.data.ptp() * 1E-7)

    # Testing network and station code parameters.
    # Default values.
    params = copy.deepcopy(basic_parameters)
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.read(request.buffer)
    for tr in st_server:
        assert tr.stats.network == "XX"
        assert tr.stats.station == "SYN"
        assert tr.stats.location == "SE"

    # Setting all three.
    params = copy.deepcopy(basic_parameters)
    params["networkcode"] = "AA"
    params["stationcode"] = "BB"
    params["locationcode"] = "CC"
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.read(request.buffer)
    for tr in st_server:
        assert tr.stats.network == "AA"
        assert tr.stats.station == "BB"
        assert tr.stats.location == "CC"

    # Setting only the location code.
    params = copy.deepcopy(basic_parameters)
    params["locationcode"] = "AA"
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.read(request.buffer)
    for tr in st_server:
        assert tr.stats.network == "XX"
        assert tr.stats.station == "SYN"
        assert tr.stats.location == "AA"

    # Test the scale parameter.
    params = copy.deepcopy(basic_parameters)
    params["scale"] = 33.33
    request = client.fetch(_assemble_url('finite_source', **params),
                           method="POST",
                           body=body)
    assert request.code == 200
    st_server = obspy.read(request.buffer)
    for tr in st_server:
        assert tr.stats._format == "MSEED"

    # Parse the finite source.
    fs = _parse_finite_source(usgs_param)
    rec = instaseis.Receiver(latitude=22,
                             longitude=11,
                             network="XX",
                             station="SYN",
                             location="SE")

    st_db = db.get_seismograms_finite_source(sources=fs, receiver=rec)
    # The origin time is the time of the first sample in the route.
    for tr in st_db:
        # Multiply with scale parameter.
        tr.data *= 33.33
        # Cut away the first ten samples as they have been previously added.
        tr.data = tr.data[10:]
        tr.stats.starttime = obspy.UTCDateTime(1900, 1, 1)

    for tr_db, tr_server in zip(st_db, st_server):
        # Sample spacing is very similar but not equal due to floating point
        # accuracy.
        np.testing.assert_allclose(tr_server.stats.delta, tr_db.stats.delta)
        tr_server.stats.delta = tr_db.stats.delta
        del tr_server.stats._format
        del tr_server.stats.mseed

        assert tr_db.stats == tr_server.stats
        np.testing.assert_allclose(tr_db.data,
                                   tr_server.data,
                                   atol=1E-6 * tr_db.data.ptp())
コード例 #27
0
#     print(ev.name)
""" Collect the corresponding data that belongs to the events """
events = SS_MTI.DataGetter.read_events_from_cat(
    event_params=Event_names,
    cat=cat,
    inv=inv,
    local_folder="/mnt/marshost/",
    host_name="marshost.ethz.ch",
    user_name="sysop",
    remote_folder="/data/",
    save_file_name=pjoin(save_folder, "event.mseed"),
)
""" Specify receiver """
lat_rec = 4.5  # 02384
lon_rec = 135.623447
rec = instaseis.Receiver(latitude=lat_rec, longitude=lon_rec)

for event in events:
    st = event.waveforms_VBB.copy()
    # epi, az, baz = _PreProcess.Get_location(
    #     la_s=event.latitude, lo_s=event.longitude, la_r=rec.latitude, lo_r=rec.longitude
    # )
    # st = st.rotate("NE->RT", back_azimuth=baz)

    P_arr = utct(event.picks["P"]) - utct(event.origin_time) + P_shift
    S_arr = utct(event.picks["S"]) - utct(event.origin_time) + S_shift
    """ Plot the waveforms and spectra """
    fig, ax = plt.subplots(nrows=3,
                           ncols=2,
                           sharex="col",
                           sharey="col",
コード例 #28
0
    delta_id = 2
    baz_id = 3
    depth_id = 4
    strike_id = 5
    rake_id = 6
    dip_id = 7

nstations = len(lons) * len(lats)
n = 0
for lon in lons:
    for lat in lats:
        n = n + 1
        print('Station ' + str(n) + ' of ' + str(nstations) + ' lat ' +
              str(lat) + ' lon ' + str(lat))
        receiver = instaseis.Receiver(latitude=90.0,
                                      longitude=0.0,
                                      network="XX",
                                      station="TITN")
        for evt in tqdm(range(0, nevents)):
            if (setmin and gr_obj.catalog.data[evt, mag_id] < min_Mw):
                continue
            latitude = 90.0 - gr_obj.catalog.data[evt, delta_id]
            longitude = gr_obj.catalog.data[evt, baz_id]
            if longitude > 180.0:
                longitude -= 360.0
            depth = limit_depth(db, gr_obj.catalog.data[evt, depth_id] * 1000.)
            strike = gr_obj.catalog.data[evt, strike_id]
            rake = gr_obj.catalog.data[evt, rake_id]
            dip = gr_obj.catalog.data[evt, dip_id]
            M0 = gr.calc_m0(gr_obj.catalog.data[evt, mag_id])
            source = instaseis.Source.from_strike_dip_rake(latitude=latitude,
                                                           longitude=longitude,
コード例 #29
0
stf = 2 * np.exp(-(t / t_half)**2) * t / t_half**2
nsample = len(t)

f = open('../stf_test.txt', 'w')

f.write('%d %f\n' % (nsample, dt))
for y in stf:
    f.write('%f\n' % (y))

f.close()

print sum(stf * dt)

db = instaseis.open_db('../wavefield/bwd')
receiver = instaseis.Receiver(latitude=30,
                              longitude=0,
                              network='MC',
                              station='kerner')
source = instaseis.Source(latitude=90.0,
                          longitude=0.0,
                          depth_in_m=0.0,
                          m_rr=1.0e13,
                          m_tt=1.0e13,
                          m_pp=1.0e13,
                          m_rt=0.0,
                          m_rp=0.0,
                          m_tp=0.0,
                          time_shift=None,
                          sliprate=stf,
                          dt=dt)
source.resample_sliprate(db.info.dt, db.info.npts)
コード例 #30
0
def test_seismogram_extraction(all_remote_dbs):
    """
    Test the seismogram extraction from local and remote databases.
    """
    # Remote and local database.
    r_db = all_remote_dbs
    l_db = instaseis.open_db(r_db._client.filepath)
    # Mock responses to get the tornado testing to work.
    _add_callback(r_db._client)

    source = instaseis.Source(
        latitude=4.0,
        longitude=3.0,
        depth_in_m=0,
        m_rr=4.71e17,
        m_tt=3.81e17,
        m_pp=-4.74e17,
        m_rt=3.99e17,
        m_rp=-8.05e17,
        m_tp=-1.23e17,
    )

    receiver = instaseis.Receiver(latitude=10.0,
                                  longitude=20.0,
                                  depth_in_m=None)

    components = r_db.available_components

    kwargs = {"source": source, "receiver": receiver, "components": components}
    _compare_streams(r_db, l_db, kwargs)

    # Test velocity and acceleration.
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": components,
        "kind": "velocity",
    }
    _compare_streams(r_db, l_db, kwargs)
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": components,
        "kind": "acceleration",
    }
    _compare_streams(r_db, l_db, kwargs)

    # Test remove source shift.
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": components,
        "remove_source_shift": False,
    }
    _compare_streams(r_db, l_db, kwargs)

    # Test resampling.
    kwargs = {
        "source": source,
        "receiver": receiver,
        "components": components,
        "dt": 1.0,
        "kernelwidth": 6,
    }
    _compare_streams(r_db, l_db, kwargs)

    # Test force source.
    if "displ_only" in r_db._client.filepath:
        source = instaseis.ForceSource(
            latitude=89.91,
            longitude=0.0,
            depth_in_m=12000,
            f_r=1.23e10,
            f_t=2.55e10,
            f_p=1.73e10,
        )
        kwargs = {"source": source, "receiver": receiver}
        _compare_streams(r_db, l_db, kwargs)

    # Fix receiver depth, network, and station codes.
    receiver = instaseis.Receiver(
        latitude=10.0,
        longitude=20.0,
        depth_in_m=0.0,
        station="ALTM",
        network="BW",
    )

    kwargs = {"source": source, "receiver": receiver, "components": components}
    _compare_streams(r_db, l_db, kwargs)