# apply the camera xform if limb == 'left': camera_xform = se3.mul(base_xform, KnowledgeBase.left_camera_offset_xform) else: camera_xform = se3.mul(base_xform, KnowledgeBase.right_camera_offset_xform) # cloud = cloud.dot(numpy.array(camera_xform[0]).reshape((3, 3))) + camera_xform[1] # # filter out the invalid points # colorized = uvtexture(color, depth_uv)[mask] # cloud = cloud[mask] # cloud_color = zip(cloud.tolist(), colorized.tolist()) # print sum(mask.astype(numpy.int).flat) camera = RemoteCamera(realsense_pc, xform=camera_xform) camera.read() camera.close() # clean up the point cloud (clean_mask, clean_cloud) = camera.clean() _, clean_cloud_aligned, _, clean_object_mask = shelf_subtract(shelf_cloud, clean_cloud, shelf, bin_bounds, downsample=1000) object_mask = numpy.zeros(camera.cloud.shape[:2], dtype=numpy.bool) object_mask[clean_mask] = clean_object_mask clean_cloud_aligned_color = map(lambda x: x[0] + [ x[1] ], zip(clean_cloud_aligned[clean_object_mask].tolist(), camera.colorize()[clean_mask][clean_object_mask].tolist())) debug_cloud([ shelf_cloud, clean_cloud, clean_cloud_aligned ]) debug_cloud([ clean_cloud_aligned_color ], [ base_xform, camera_xform ], world=world) #debug_cloud([ cloud_color ], xforms=[ base_xform, camera_xform ], world=world) pcd.write(clean_cloud_aligned_color, '/tmp/test.pcd')
def localizeSpecificObject(self, bin, object): SHELF_DIMS_PATH = os.path.join('kb', 'shelf_dims.json') SHELF_CLOUD_PATH = os.path.join('perception', 'segmentation', 'models', 'shelf_thin_10000.npy') # acquire the camera image address = { 'left': '192.168.0.103', 'right': '192.168.0.104' }[self.knowledge_base.active_limb] #address = { 'left': '192.168.0.103', 'right': '192.168.0.103' }[self.knowledge_base.active_limb] camera = RemoteCamera(address, xform=self.camera_xform) camera.read() camera.close() # load the shelf subtraction data bin_bounds = json.load(open(SHELF_DIMS_PATH))[bin] # load and transform the shelf point cloud shelf_cloud = numpy.load(open(SHELF_CLOUD_PATH)) shelf_cloud = shelf_cloud.dot(numpy.array(self.knowledge_base.shelf_xform[0]).reshape((3,3))) + self.knowledge_base.shelf_xform[1] # load and transform the shelf model world = WorldModel() shelf = world.loadRigidObject(os.path.join('klampt_models', 'north_shelf', 'shelf_with_bins.obj')) shelf.setTransform(*self.knowledge_base.shelf_xform) # clean up the point cloud (clean_mask, clean_cloud) = camera.clean() _, clean_cloud_aligned, _, clean_object_mask = shelf_subtract(shelf_cloud, clean_cloud, shelf, bin_bounds, downsample=1000) object_mask = numpy.zeros(camera.cloud.shape[:2], dtype=numpy.bool) object_mask[clean_mask] = clean_object_mask #clean_cloud_aligned_color = map(lambda x: x[0] + [ x[1] ], zip(clean_cloud_aligned[clean_object_mask].tolist(), camera.colorize()[clean_mask][clean_object_mask].tolist())) #debug_cloud([ clean_cloud_aligned_color ], [ self.base_xform, self.camera_xform ]) #debug_cloud([ shelf_cloud, clean_cloud, clean_cloud_aligned ]) #pcd.write(clean_cloud_aligned_color, open('/tmp/{}_{}.pcd'.format(self.knowledge_base.target_object, self.knowledge_base.target_bin), 'w')) (target_bin, target_object) = (self.knowledge_base.target_bin, self.knowledge_base.target_object) bin_contents = self.knowledge_base.bin_contents[target_bin] if target_bin in self.knowledge_base.bin_contents else [] # perform special handling if target_object == 'rollodex_mesh_collection_jumbo_pencil_cup': logger.info('running specialized rollodex cups detection') return self._localizeRollodexCups(world, camera.color, clean_cloud_aligned, camera.depth_uv, clean_mask, object_mask) # dilate the object mask # from scipy.misc import imsave from scipy.ndimage.morphology import binary_dilation object_mask_dilated = binary_dilation(object_mask, iterations=2) # imsave('/tmp/test.png', object_mask) # label connected components (object_labeled, label_count) = distance_label(camera.cloud, object_mask_dilated, threshold=0.01) logger.info('found {} connected components'.format(label_count)) #KH: added to help debugging without changing order bin contents if object not in bin_contents: logger.warning("Warning, trying to detect object "+object+" not in bin contents, adding a temporary entry") bin_contents = bin_contents + [object] bin_contents_with_shelf = bin_contents + [ 'shelf' ] if not label_count: logger.warning('found no connected components') mask = object_mask bin_contents = self.knowledge_base.bin_contents[self.knowledge_base.target_bin] confusion_row = dict(zip(bin_contents, [0]*len(bin_contents))) else: object_blobs = sorted([ object_labeled == (l+1) for l in range(label_count) ], key=lambda b: -numpy.count_nonzero(b)) #for (i, blob) in enumerate(object_blobs): # logger.debug('blob {}: {} points'.format(i, numpy.count_nonzero(blob))) # filter out blobs with fewer than 1000 points min_point_count = 1000 object_blobs = filter(lambda blob: numpy.count_nonzero(blob[clean_mask]) >= min_point_count, object_blobs) #debug_cloud([ clean_cloud_aligned[(object_mask & blob_mask)[clean_mask]] for blob_mask in object_blobs ], [ self.base_xform, self.camera_xform ], wait=False) known_object_count = len(bin_contents) if known_object_count == 0: # return all large blobs n = len(object_blobs) # take only the largest n blobs blob_mask = reduce(numpy.bitwise_or, object_blobs[:n]) mask = object_mask & blob_mask logger.warning('no objects in bin... -> returning all blobs') else: # load the matching statistics match_stats = json.load(open(os.path.join('perception', 'segmentation', 'match_stats.json'))) # load the object hue histograms known_histograms = {} for obj in bin_contents_with_shelf: #array = numpy.load(os.path.join('perception', 'hue_array', '{}.npz'.format(obj)))['arr_0'] #known_histograms[obj] = numpy.histogram(array, bins=range(0,181), density=True)[0].reshape(-1,1).astype(numpy.float32) known_histograms[obj] = numpy.load(os.path.join('perception', 'uv_hist2', '{}.npz'.format(obj)))['arr_0'] # compute the color validity mask color_valid_mask = ~invalid_mask(camera.depth_uv) #KH addition 5/23: test to see whether blobs should be broken up if len(object_blobs)==1 and len(known_histograms) > 2: logger.info("Trying KMeans segmentation to break up large blob") blob_mask = reduce(numpy.bitwise_or, object_blobs) mask = object_mask & blob_mask & color_valid_mask labels,k,score = xyzrgb_segment_kmeans(camera.cloud[mask],camera.colorize()[mask],known_histograms.values()) labels = numpy.array(labels) object_blobs = [] for i in xrange(len(known_histograms)): blank = numpy.zeros_like(object_mask,dtype=numpy.bool) blank[mask] = (labels==i) object_blobs.append(blank) # score each blob for each object in the bin blob_scores = [] blob_accepts = [] blob_rejects = [] matched_blobs = {} confusion_matrix = [] for (i, blob) in enumerate(object_blobs): # compute the blob histogram blob_uv = [ rgb2yuv(*rgb)[1:3] for rgb in camera.colorize()[object_mask & blob & color_valid_mask] ] blob_histogram = make_uv_hist(blob_uv) # compare the blob to each possible object scores = dict([ (obj, 2 * numpy.minimum(blob_histogram, histogram).sum() - numpy.maximum(blob_histogram, histogram).sum()) for (obj, histogram) in known_histograms.items() ]) logger.debug('blob {}:'.format(i)) blob_scores.append(scores) logger.debug(' scores: {}'.format([ '{}={}'.format(*x) for x in scores.items() ])) # apply the cutoff to each score and associate with positive confidence accepts = dict([ (obj, match_stats[obj]['ppv']) for obj in bin_contents_with_shelf if scores[obj] >= match_stats[obj]['cutoff'] ]) blob_accepts.append(accepts) logger.debug(' accepts: {}'.format([ '{}={}'.format(*x) for x in accepts.items() ])) # apply the cutoff to each score and associate with negative confidence rejects = dict([ (obj, match_stats[obj]['npv']) for obj in bin_contents_with_shelf if scores[obj] < match_stats[obj]['cutoff'] ]) blob_rejects.append(rejects) logger.debug(' rejects: {}'.format([ '{}={}'.format(*x) for x in rejects.items() ])) # populate the confusion matrix shelf_probability = 0.1 S = lambda o: match_stats[o]['specificity'] iS = lambda o: 1 - S(o) total_probability = sum(map(S, accepts)) + sum(map(iS, rejects)) + shelf_probability confusion_matrix.append([ [ iS(o), S(o) ][ o in accepts ] / total_probability for o in bin_contents ]) # resolve multiple assignments if len(accepts) > 1: # choose the object with the highest matched confidence best_match_object = sorted(accepts.items(), key=lambda a: -a[1])[0][0] # remove all other objects for (obj, confidence) in accepts.items(): if obj != best_match_object: del accepts[obj] logger.warn('blob {} multiple accept ignored: {}={}'.format(i, obj, confidence)) if len(accepts) == 1: # a single match so record it matched_blobs.setdefault(accepts.keys()[0], []).append(i) logger.info('blob {} assigned to {} by single match'.format(i, accepts.keys()[0])) confusion_matrix = numpy.array(confusion_matrix) logger.debug('confusion matrix:\n{}'.format(numpy.array(confusion_matrix))) # assign blobs by least threshold difference until all objects are assigned (excluding shelf) or all blobs are assigned while len([ k for k in matched_blobs.keys() if k != 'shelf']) < len(bin_contents) and len(sum(matched_blobs.values(), [])) < len(object_blobs): best_match_objects = [] for (i, scores) in enumerate(blob_scores): # only consider unmatched blobs if i not in sum(matched_blobs.values(), []): threshold_differences = [ [obj, match_stats[obj]['cutoff'] - score] for (obj, score) in scores.items() ] best_match_objects.append([ i ] + sorted(threshold_differences, key=lambda d: d[1])[0]) # choose the least threshold difference across all blobs and objects best_blob, best_object, _ = sorted(best_match_objects, key=lambda b: b[2])[0] matched_blobs.setdefault(best_object, []).append(best_blob) logger.warn('blob {} assigned to {} by least threshold difference'.format(best_blob, best_object)) # report unmatched blobs and objects (excluding shelf) for obj in bin_contents: if obj not in matched_blobs: logger.warn('no blobs matched {}'.format(obj)) for i in range(len(object_blobs)): if i not in sum(matched_blobs.values(), []): logger.warn('blob {} is unassigned'.format(i)) for obj in bin_contents_with_shelf: if obj in matched_blobs: print obj mask = reduce(numpy.bitwise_or, [ object_blobs[i] for i in matched_blobs[obj] ], numpy.zeros_like(object_mask)) object_cloud = clean_cloud_aligned[mask[clean_mask]] xform = (so3.identity(), object_cloud.mean(axis=0).tolist()) object_cloud_color = map(lambda x: x[0] + [ x[1] ], zip(object_cloud.tolist(), camera.colorize()[mask].tolist())) #debug_cloud([ object_cloud_color ], [ self.base_xform, self.camera_xform, xform ]) # check that the target object was found if target_object not in matched_blobs: logger.error('no blobs assigned to target object') return None # return blob for the selected object mask = reduce(numpy.bitwise_or, [ object_blobs[i] for i in matched_blobs[target_object] ], numpy.zeros_like(object_mask)) # return the confusion matrix rows for the selected object confusion_rows = confusion_matrix[matched_blobs[target_object], :] confusion_row = dict([ (obj, confusion_rows[:, i].mean()) for (i, obj) in enumerate(bin_contents) ]) logger.info('confusion row for {}: {}'.format(target_object, confusion_row)) object_cloud = clean_cloud_aligned[mask[clean_mask]] #xform = (so3.identity(), object_cloud.mean(axis=0).tolist()) xform = se3.identity() object_cloud_color = map(lambda x: x[0] + [ x[1] ], zip(object_cloud.tolist(), camera.colorize()[mask].tolist())) #debug_cloud([ object_cloud_color ], [ self.base_xform, self.camera_xform, xform ]) # downsample the cloud to about 1000 points ratio = int(len(object_cloud) / 1000) if ratio > 1: object_cloud_color = object_cloud_color[::ratio] pcd.write(object_cloud_color, open('/tmp/{}_{}.pcd'.format(self.knowledge_base.target_object, self.knowledge_base.target_bin), 'w')) return (xform, object_cloud_color, confusion_row)