コード例 #1
0
ファイル: tidal_tools.py プロジェクト: calypso-science/schism
def extrapolate_pha(lon, lat, lonr, latr, maskr, arr):

    cx, cy = np.cos(arr), np.sin(arr)
    cx = mask_interp(lon, lat, cx)
    cy = mask_interp(lon, lat, cy)
    cx = cx(np.vstack((lonr, latr)).T, nnear=6, p=2)
    cy = cy(np.vstack((lonr, latr)).T, nnear=6, p=2)
    bad = np.logical_or(np.isnan(cy), np.isnan(cx))
    if np.any(bad):
        import pdb
        pdb.set_trace()

    arr = np.arctan2(cy, cx)
    return arr
コード例 #2
0
ファイル: ic.py プロジェクト: calypso-science/schism
    def _create_nc_gr3(self, ncfile, var):
        data = netCDF4.Dataset(ncfile)
        # Read the grid file

        X = data.variables['longitude'][:]
        Y = data.variables['latitude'][:]
        if len(X.shape) == 1:
            xx, yy = np.meshgrid(X, Y)

        lon = self.hgrid.longitude
        lat = self.hgrid.latitude

        res = xr.open_dataset(ncfile)
        _, index = np.unique(res['time'], return_index=True)
        res = res.isel(time=index)
        #time0=[np.datetime64(x) for x in time0]
        arri = res[var][:]

        arri_time = arri.interp(time=self.t0.strftime('%Y-%m-%d %H:%M:%S'))
        #geo_idx = (np.abs(date2num(time0)-date2num(self.t0))).argmin() # closest timestep

        if len(arri_time.shape) > 2:
            arri_time = arri_time[0]  # get surface level

        src = mask_interp(xx, yy, arri_time.to_masked_array())

        tb = src(np.vstack((lon, lat)).T, nnear=1, p=2)

        if np.any(np.isnan(tb)):
            import pdb
            pdb.set_trace()

        self._create_constante_gr3(tb)
コード例 #3
0
ファイル: tidal_tools.py プロジェクト: calypso-science/schism
def extrapolate_amp(lon, lat, lonr, latr, maskr, arr):
    arr = mask_interp(lon, lat, arr)
    arri = arr(np.vstack((lonr, latr)).T, nnear=6, p=2)

    bad = np.isnan(arri)
    if np.any(bad):
        import pdb
        pdb.set_trace()

    return arri
コード例 #4
0
ファイル: hotstart.py プロジェクト: calypso-science/schism
    def get_elev(self, config):
        Time = date2num(self.t0)
        if 'tidal' in config:
            self.cons = config['tidal'].get('cons', None)
            OpenBoundaries.add_tide(self, config['tidal'])

        if 'residual' in config:
            OpenBoundaries.add_res(self, config['residual'])

        total = np.zeros(shape=(len(self.llon), 1))

        # get tide
        if self.tidal:
            var = list(self.HC.keys())[0]
            # horizontal interpolation
            tmp = get_tide(self.constidx, self.tfreq, self.HC[var],
                           np.array(Time), np.mean(self.llat))
            total += tmp

        if self.residual:
            if 'longitude' in self.res_file.dims:
                lon_name = 'longitude'
                lat_name = 'latitude'
            else:
                lon_name = 'lon'
                lat_name = 'lat'

            xx, yy = np.meshgrid(self.res_file[lon_name][:],
                                 self.res_file[lat_name][:])

            var = self.res_vars[0]
            arri = self.res_file[var][:]
            arri_time = arri.interp(
                time=num2date(date2num(np.datetime64(num2date(
                    Time)))).strftime('%Y-%m-%d %H:%M:%S'))
            arr = mask_interp(xx, yy, arri_time.to_masked_array())
            tb = arr(np.vstack((self.llon, self.llat)).T, nnear=6, p=2)
            total[:, 0] = total[:, 0] + tb

        return total
コード例 #5
0
    def create_Dthnc(self, fileout, TimeSeries):
        if '2D' in fileout:
            self.i23d = 2
        else:
            self.i23d = 3

        tin = [np.datetime64(num2date(x)) for x in TimeSeries]
        if self.residual:
            if 'longitude' in self.res_file.dims:
                lon_name = 'longitude'
                lat_name = 'latitude'
            else:
                lon_name = 'lon'
                lat_name = 'lat'

            xx, yy = np.meshgrid(self.res_file[lon_name][:],
                                 self.res_file[lat_name][:])

        # create file
        if self.i23d == 3:
            Nlev = self.zz.shape[1]
        else:
            Nlev = 1

        time_Series, nc = create_ncTH(
            fileout, len(self.llon), Nlev, self.ivs,
            np.round((TimeSeries - TimeSeries[0]) * 24 * 3600))

        for n in range(0, len(TimeSeries)):

            total = np.zeros(shape=(self.ivs, len(self.llon), Nlev))

            # get tide
            if self.tidal:
                var = self.HC.keys()

                for i, v in enumerate(sorted(var)):
                    # horizontal interpolation
                    tmp = get_tide(self.constidx, self.tfreq, self.HC[v],
                                   np.array(TimeSeries[n]), self.lat0)

                    if self.i23d > 2:  # vertical interpolation
                        tmp = vertical_extrapolation(tmp, self.zz, z0=self.z0)

                    total[i, :, :] = total[i, :, :] + tmp

            if self.residual:

                var = self.res_vars

                for i, v in enumerate(sorted(var)):
                    arri = self.res_file[v][:]

                    arri_time = arri.interp(time=num2date(date2num(
                        tin[n])).strftime('%Y-%m-%d %H:%M:%S'))

                    if self.i23d > 2:
                        tb = np.ndarray((len(self.llon), Nlev))
                        tmp = np.ndarray(
                            (len(self.llon), arri_time.shape[0])) * np.nan
                        for nlev in range(0, arri_time.shape[0]):
                            if np.any(arri_time[nlev].to_masked_array()):
                                arr = mask_interp(
                                    xx, yy, arri_time[nlev].to_masked_array())

                                if len(arr.z) > 1:
                                    tmp[:, nlev] = arr(np.vstack(
                                        (self.llon, self.llat)).T,
                                                       nnear=1,
                                                       p=2)

                        zi = self.res_file['lev'][:].values
                        if np.mean(zi) > 0:
                            zi = zi * -1
                        for p in range(0, tmp.shape[0]):
                            if self.zz.shape[1] == 2:  # 2D
                                total_depth = self.zz[p, 0]
                                bad = np.isnan(tmp[p, :])
                                depth = zi[~bad]
                                vel = tmp[p, ~bad]
                                depth = np.insert(depth, 0, 0, axis=0)
                                ve = 0
                                tot = 0
                                for dep in range(0, len(depth) - 1):
                                    dz = depth[dep] - depth[dep + 1]
                                    dx = vel[dep]
                                    ve += dx * dz
                                    tot += dz

                                tb[p, :] = ve / np.abs(tot)
                            else:  # 3D

                                bad = np.isnan(tmp[p, :])
                                caca = interp1d(zi[~bad],
                                                tmp[p, ~bad],
                                                fill_value="extrapolate")
                                tb[p, :] = caca(self.zz[p, :])

                    else:
                        arr = mask_interp(xx, yy, arri_time.to_masked_array())
                        tb = arr(np.vstack((self.llon, self.llat)).T,
                                 nnear=6,
                                 p=2)

                    if np.any(np.isnan(tb)):
                        print('probleme')

                    total[i, :, :] = total[i, :, :] + np.reshape(
                        tb, (len(self.llon), Nlev))

            total = np.transpose(total, (1, 2, 0))

            if np.isnan(total).any():
                import pdb
                pdb.set_trace()

            if n % 100 == 0:
                self.logger.info(
                    'For timestep=%.f, max=%.4f, min=%.4f , max abs diff=%.4f'
                    % (TimeSeries[n], total.max(), total.min(),
                       abs(np.diff(total, n=1, axis=0)).max()))

            time_Series[n, :, :, :] = total

        nc.close()
コード例 #6
0
ファイル: hotstart.py プロジェクト: calypso-science/schism
    def get_tracet_at_node(self, config):
        Time = date2num(self.t0)
        self.llat, self.llon, self.zz = self.get_all_nodes()
        self.zz = np.array(self.zz)
        Nlev = self.zz.shape[1]
        total = np.zeros(shape=(len(self.llon), Nlev))

        Time = date2num(self.t0)
        OpenBoundaries.add_res(self, config)

        if 'longitude' in self.res_file.dims:
            lon_name = 'longitude'
            lat_name = 'latitude'
        else:
            lon_name = 'lon'
            lat_name = 'lat'

        xx, yy = np.meshgrid(self.res_file[lon_name][:],
                             self.res_file[lat_name][:])

        zi = self.res_file['lev'][:].values
        if np.mean(zi) > 0:
            zi = zi * -1

        var = self.res_vars[0]
        arri = self.res_file[var][:]
        arri_time = arri.interp(
            time=num2date(date2num(np.datetime64(num2date(Time)))).strftime(
                '%Y-%m-%d %H:%M:%S'))

        tb = np.ndarray((len(self.llon), Nlev))
        tmp = np.ndarray((len(self.llon), arri_time.shape[0])) * np.nan
        for nlev in range(0, arri_time.shape[0]):
            if np.any(arri_time[nlev].to_masked_array()):
                arr = mask_interp(xx, yy, arri_time[nlev].to_masked_array())
                if len(arr.z) > 1:
                    tmp[:, nlev] = arr(np.vstack((self.llon, self.llat)).T,
                                       nnear=1,
                                       p=2)

        tpm = fill_in_gap(tmp)

        if self.zs.shape[1] == 2:  # 2D
            for p in range(0, tmp.shape[0]):
                total_depth = self.zz[p, 0]
                bad = np.isnan(tmp[p, :])
                depth = zi[~bad]
                vel = tmp[p, ~bad]
                depth = np.insert(depth, 0, 0, axis=0)
                ve = 0
                tot = 0
                for dep in range(0, len(depth) - 1):
                    dz = depth[dep] - depth[dep + 1]
                    dx = vel[dep]
                    ve += dx * dz
                    tot += dz

                tb[p, :] = ve / np.abs(tot)
        else:  # 3D
            varin = np.fliplr(tmp)  #[:,~bad])
            zin = np.fliplr(np.matlib.repmat(zi, varin.shape[0], 1))

            for nl in range(0, self.zz.shape[1]):
                zout = self.zz[:, nl]
                tb[:, nl] = np.squeeze(
                    interpvert.interpz1d(varin,
                                         zin,
                                         zout,
                                         np=varin.shape[0],
                                         nzin=varin.shape[1],
                                         nzout=1,
                                         kz=1,
                                         null_value=-9.9e15))

        return tb
コード例 #7
0
ファイル: hotstart.py プロジェクト: calypso-science/schism
    def get_uv(self, config):
        Time = date2num(self.t0)
        self.llon = copy.deepcopy(self.xs)
        self.llat = copy.deepcopy(self.ys)
        Nlev = self.zz.shape[1]
        total = np.zeros(shape=(2, len(self.llon), Nlev))

        Time = date2num(self.t0)
        if 'tidal' in config:
            self.cons = config['tidal'].get('cons', None)
            OpenBoundaries.add_tide(self, config['tidal'])

        if 'residual' in config:
            OpenBoundaries.add_res(self, config['residual'])

        # get tide
        if self.tidal:
            var = self.HC.keys()
            for i, v in enumerate(sorted(var)):
                # horizontal interpolation
                tmp = get_tide(self.constidx, self.tfreq, self.HC[v],
                               np.array(Time), np.mean(self.llat))
                tmp = vertical_extrapolation(tmp, self.zs, z0=self.z0)
                tpm = fill_in_gap(tmp)
                total[i, :, :] = total[i, :, :] + tmp

        if self.residual:
            if 'longitude' in self.res_file.dims:
                lon_name = 'longitude'
                lat_name = 'latitude'
            else:
                lon_name = 'lon'
                lat_name = 'lat'

            xx, yy = np.meshgrid(self.res_file[lon_name][:],
                                 self.res_file[lat_name][:])
            var = self.res_vars

            zi = self.res_file['lev'][:].values
            if np.mean(zi) > 0:
                zi = zi * -1

            for i, v in enumerate(sorted(var)):
                arri = self.res_file[v][:]
                arri_time = arri.interp(
                    time=num2date(date2num(np.datetime64(num2date(
                        Time)))).strftime('%Y-%m-%d %H:%M:%S'))

                tb = np.ndarray((len(self.llon), Nlev))
                tmp = np.ndarray((len(self.llon), arri_time.shape[0])) * np.nan
                for nlev in range(0, arri_time.shape[0]):
                    if np.any(arri_time[nlev].to_masked_array()):
                        arr = mask_interp(xx, yy,
                                          arri_time[nlev].to_masked_array())
                        if len(arr.z) > 1:
                            tmp[:, nlev] = arr(np.vstack(
                                (self.llon, self.llat)).T,
                                               nnear=1,
                                               p=2)

                tpm = fill_in_gap(tmp)

                if self.zs.shape[1] == 2:  # 2D
                    for p in range(0, tmp.shape[0]):
                        total_depth = self.zs[p, 0]
                        bad = np.isnan(tmp[p, :])
                        depth = zi[~bad]
                        vel = tmp[p, ~bad]
                        depth = np.insert(depth, 0, 0, axis=0)
                        ve = 0
                        tot = 0
                        for dep in range(0, len(depth) - 1):
                            dz = depth[dep] - depth[dep + 1]
                            dx = vel[dep]
                            ve += dx * dz
                            tot += dz

                        tb[p, :] = ve / np.abs(tot)
                else:  # 3D
                    varin = np.fliplr(tmp)  #[:,~bad])
                    zin = np.fliplr(np.matlib.repmat(zi, varin.shape[0], 1))

                    for nl in range(0, self.zs.shape[1]):
                        zout = self.zs[:, nl]
                        tb[:, nl] = np.squeeze(
                            interpvert.interpz1d(varin,
                                                 zin,
                                                 zout,
                                                 np=varin.shape[0],
                                                 nzin=varin.shape[1],
                                                 nzout=1,
                                                 kz=1,
                                                 null_value=-9.9e15))

                total[i, :, :] = total[i, :, :] + tb
        return total