コード例 #1
0
ファイル: controli.py プロジェクト: drohnet/python
def saberpaso(user):
    txt=open(str(user)+'.txt','r')
    lineas=txt.readline()
    print "La ultima consulta realizada fue en la leccion :"+str(lineas)
    txt.close()
    if lineas == '' :
        intro.intro(user)
    else:
        continu(user)
コード例 #2
0
ファイル: main.py プロジェクト: Sylvester96/pizza-takeout
def main():
    confirmation = "no"
    while confirmation == "no" or confirmation == "n":
        intro.intro()
        confirmation = input(
            "\nDo you confirm your order? ('no' or 'n' 'to re-enter your order details): \n>>> "
        ).lower()
        print(
            "You're order is all set now. Kindly wait as we prepare your order in afew mins."
        )
        print("\nThank you for choosing us. Bon Apetite!")
コード例 #3
0
ファイル: data_collect.py プロジェクト: 0x0is1/glimmer
def data_collector(sample_id, sample_type, report_type, doc_type, req):

    if doc_type == 'html':
        #do stuff
        if req == "intro":
            return intro(sample_id, sample_type)
        if req == "name":
            return name_collector(sample_id, sample_type)
        if req == "gene":
            return feature_gene(sample_id, sample_type)
        if req == "stem-loop":
            return feature_stem_loop(sample_id, sample_type)
        if req == "peptide":
            return feature_peptide(sample_id, sample_type)
        if req == "cds":
            return feature_cds(sample_id, sample_type)
        if req == "source":
            return feature_source(sample_id, sample_type)
        if req == "comment":
            return comment(sample_id, sample_type)
        if req == "sequence":
            return chain_sequence(sample_id, sample_type)
        if req == "all":
            return soup_collector(sample_id, sample_type).text
        else:
            print('Invalid parameter supplied!')

    else:
        url = "https://www.ncbi.nlm.nih.gov/sviewer/viewer.fcgi?id=" + sample_id + "&db=" + sample_type + "&report=" + report_type + "&extrafeat=null&conwithfeat=on&retmode=" + doc_type + "&tool=portal&maxdownloadsize=1000000"
        data = requests.get(url)
        soup = bs(data.content, 'html.parser')
        for script in soup(["script", "style"]):
            script.decompose()
        return soup, url
コード例 #4
0
ファイル: run.py プロジェクト: SamTheJam/markov_chain
def program():
    run = True
    while run:
        book_url = books_list[randint(0, len(books_list) - 1)]
        print "Number of books left: " + str(len(books_list))
        book = get_book_data(book_url)
        user = intro()
        mc = MarkovChain()
        mc.add_string(book['text'])
        print '"' + textify_markov(mc.generate_text(15)) + '" \n'
        #result = game_run(book, 0)
        game_run(book, user)
        sleep(1)
        option = raw_input(
            'Want to run another round with a different book? Enter Y/N: \n'
        ).upper()
        while option == 'Y':
            books_list.remove(book_url)
            book_url = books_list[randint(0, len(books_list) - 1)]
            book = get_book_data(book_url)
            mc = MarkovChain()
            mc.add_string(book['text'])
            print '"' + textify_markov(mc.generate_text(15)) + '"'
            #result = game_run(book)
            game_run(book, user)
            option = raw_input(
                'Want to run another round with different books? Enter Y/N: \n'
            ).upper()
        else:
            run = False
        print "Number of books left: " + str(len(books_list))
    else:
        print "Ending game..."
        sys.exit()
コード例 #5
0
    def __init__(self, system, pdata, qdata = None):

        r'''
        :param system: system considered for simulation, specified
                       using the :class:`casiopeia.system.System` class
        :type system: casiopeia.system.System

        :param pdata: values of the time-constant parameters 
                      :math:`p \in \mathbb{R}^{\text{n}_\text{p}}`
        :type pdata: numpy.ndarray, casadi.DMatrix

        :param qdata: optional, values of the time-constant controls
                      :math:`q \in \mathbb{R}^{\text{n}_\text{q}}`; if no
                      values are given, 0 will be used
        :type qdata: numpy.ndarray, casadi.DMatrix

        '''

        intro()

        self.__system = inputchecks.set_system(system)

        self.__generate_simulation_ode(pdata, qdata)
        self.__generate_scaled_dae()
コード例 #6
0
ファイル: sim.py プロジェクト: adbuerger/casiopeia
    def __init__(self, system, pdata, qdata=None):

        r"""
        :param system: system considered for simulation, specified
                       using the :class:`casiopeia.system.System` class
        :type system: casiopeia.system.System

        :param pdata: values of the time-constant parameters 
                      :math:`p \in \mathbb{R}^{\text{n}_\text{p}}`
        :type pdata: numpy.ndarray, casadi.DMatrix

        :param qdata: optional, values of the time-constant controls
                      :math:`q \in \mathbb{R}^{\text{n}_\text{q}}`; if no
                      values are given, 0 will be used
        :type qdata: numpy.ndarray, casadi.DMatrix

        """

        intro()

        self.__system = inputchecks.set_system(system)

        self.__generate_simulation_ode(pdata, qdata)
        self.__generate_scaled_dae()
コード例 #7
0
ファイル: menu.py プロジェクト: elprimo041/HIS
def menu(myWin, N, test_num):
    result = []
    #インスタンスを作成
    test = tests.Test(myWin, N)

    if test_num == 1:
        line1 = u'実験1:単純反応'
    elif test_num == 2:
        line1 = u'実験2:物理的照合'
    elif test_num == 3:
        line1 = u'実験3:名称称号'
    elif test_num == 4:
        line1 = u'実験4:カテゴリ照合'

    msg = visual.TextStim(myWin, font = 'ヒラギノ角ゴシック W5', color = 'Black'\
                      , alignHoriz = 'left', alignVert = 'top')

    msg.setText(line1 + u'\n\n実験に進む場合は1を,説明を表示するには2を, \
                \n実験選択に戻るにはqを入力してください.\
                \n\n1:実験開始\n\n2:イントロ\n\nq:実験選択に戻る')
    msg.pos = (-0.7, 0.7)
    event.clearEvents()
    while True:
        msg.draw()
        myWin.flip()
        key = event.getKeys()
        if '1' in key:
            if test_num == 1:
                result = test.test1(0, test_num)
            else:
                result = test.test2(0, test_num)
            break

        elif '2' in key:
            tmp = intro.intro(myWin, N, test_num)
            if tmp == 0:
                if test_num == 1:
                    result = test.test1(0, test_num)
                else:
                    result = test.test2(0, test_num)
            break

        elif 'q' in key:
            return
    return result
コード例 #8
0
ファイル: main.py プロジェクト: Johndsalas/space_commander
def game_loop():
    '''
    Main game loop
    '''

    # Beginning Values
    fuel = 30
    food = 40
    power = 10
    hull = 6
    crew = 10
    morale = 100
    distance = 25
    g_dist = 20

    # begin game loop
    running = True
    starting = True
    while running:

        # give introduction if this is the first round of play
        if starting:

            fuel, food, power, hull, crew, morale = i.intro(
                fuel, food, power, hull, crew, morale)

            starting = False

        # Display Distance
        h.status(distance, g_dist)

        # Phase 1: Production Phase
        fuel, food, power, hull, crew, morale = p.production_phase(
            fuel, food, power, hull, crew, morale)

        # Display Resources
        h.hud(fuel, food, power, hull, crew, morale)

        # Phase 2: Spend Phase
        fuel, food, power, hull, crew, morale, distance_traveled = s.spend_phase(
            fuel, food, power, hull, crew, morale, g_dist, distance)

        # Check for loss conditions
        if ed.lose(fuel, food, power, hull, crew, morale, g_dist):

            break

        # Phase 3: Event Phase
        fuel, food, power, hull, crew, morale = e.event_phase(
            fuel, food, power, hull, crew, morale)

        # Check for loss conditions
        if ed.lose(fuel, food, power, hull, crew, morale, g_dist):

            break

        # phase 4: Travel Phase
        distance, g_dist = t.travel_phase(distance, distance_traveled, g_dist)

        # Check for win conditions
        if ed.win(distance):

            break

        # Check for loss conditions
        if ed.lose(fuel, food, power, hull, crew, morale, g_dist):

            break
コード例 #9
0
ファイル: brodah_birday.py プロジェクト: yeej2/game
def main():
    intro.intro()
    one.story_wake_up()
    two.chtwo()
    three.chthree()
コード例 #10
0
ファイル: init.py プロジェクト: gmfk07/MurderMysteryGenerator
    for s in suspects:
        if s != murderer and random.choice((True, True, False)):
            counter = 1
            while counter <= 3:
                tm = s.getTime() + counter - 1
                if tm > 12:
                    tm -= 12
                if tm in dictItem:
                    if counter == 1:
                        firstOne = dictItem[tm]
                    else:
                        if dictItem[tm] == firstOne:
                            dictItem[tm] = routine.leaveItem(s)
                counter += 1

    intro.intro(murderVictim, month, day, murderWeapon, murderLocation,
                murderHour, murderTOD)
    while daysLeft > 0:
        routine.whatDo(daysLeft, suspects[0], suspects[1], suspects[2],
                       suspects[3], mapJobs, mapQ1, mapQ2, mapArchetype,
                       murderWeapon, murderVictim, murderer, dictItem)
        daysLeft -= 1

    print("")
    print("Time's up. Who's the murderer?")
    print("1) " + suspects[0].getName())
    print("2) " + suspects[1].getName())
    print("3) " + suspects[2].getName())
    print("4) " + suspects[3].getName())
    print("")
    while True:
        try:
コード例 #11
0
###

import comp
import lista.list
import random
import intro

###
#Recoleccion y comprobacion
###

letra=random.randrange(1, 31)

#Letra A
if letra==1:
	intro.intro(list_color_A, lista_marca_A)
	
#Letra B
if letra==2:
	intro.intro(list_color_B, lista_marca_B)

#Letra C
if letra==3:
	intro.intro(list_color_C, lista_marca_C)
#
###
#Final
###

#Puntuacion
raw_input()
コード例 #12
0
ファイル: server.py プロジェクト: emiltayl/mud.tilde.town
 def connectionMade(self):
     print self.factory
     intro(self)
     self.factory.clientProtocols.append(self)
コード例 #13
0
ファイル: pe.py プロジェクト: adbuerger/casiopeia
    def __init__(self, system, time_points, \
        udata = None, qdata = None,\
        ydata = None, \
        pinit = None, xinit = None, \
        wv = None, weps_u = None, \
        discretization_method = "collocation", **kwargs):

        r'''
        :raises: AttributeError, NotImplementedError

        :param system: system considered for parameter estimation, specified
                       using the :class:`casiopeia.system.System` class
        :type system: casiopeia.system.System

        :param time_points: time points :math:`t_\text{N} \in \mathbb{R}^\text{N}`
                   used to discretize the continuous time problem. Controls
                   will be applied at the first :math:`N-1` time points,
                   while measurements take place at all :math:`N` time points.
        :type time_points: numpy.ndarray, casadi.DMatrix, list

        :param udata: optional, values for the time-varying controls 
                   :math:`u_\text{N} \in \mathbb{R}^{\text{n}_\text{u} \times \text{N}-1}`
                   that can change at the switching time points;
                   if no values are given, 0 will be used; note that the
                   the second dimension of :math:`u_\text{N}` is :math:`N-1` and not
                   :math:`N`, since there is no control value applied at the
                   last time point
        :type udata: numpy.ndarray, casadi.DMatrix

        :param qdata: optional, values for the time-constant controls
                   :math:`q_\text{N} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, 0 will be used
        :type qdata: numpy.ndarray, casadi.DMatrix

        :param ydata: values for the measurements at the switching time points
                   :math:`y_\text{N} \in \mathbb{R}^{\text{n}_\text{y} \times \text{N}}`
        :type ydata: numpy.ndarray, casadi.DMatrix    

        :param wv: weightings for the measurements
                   :math:`w_\text{v} \in \mathbb{R}^{\text{n}_\text{y} \times \text{N}}`
        :type wv: numpy.ndarray, casadi.DMatrix    

        :param weps_u: weightings for the input errors
                   :math:`w_{\epsilon_\text{u}} \in \mathbb{R}^{\text{n}_{\epsilon_\text{u}}}`
                   (only necessary
                   if input errors are used within ``system``)
        :type weps_u: numpy.ndarray, casadi.DMatrix    

        :param pinit: optional, initial guess for the values of the
                      parameters that will be estimated
                      :math:`p_\text{init} \in \mathbb{R}^{\text{n}_\text{p}}`; if no
                      value is given, 0 will be used; note that a poorly or
                      wrongly chosen initial guess can cause the estimation
                      to fail
        :type pinit: numpy.ndarray, casadi.DMatrix

        :param xinit: optional, initial guess for the values of the
                      states that will be estimated
                      :math:`x_\text{init} \in \mathbb{R}^{\text{n}_\text{x} \times \text{N}}`;
                      if no value is given, 0 will be used; note that a poorly
                      or wrongly chosen initial guess can cause the estimation
                      to fail
        :type xinit: numpy.ndarray, casadi.DMatrix

        :param discretization_method: optional, the method that shall be used for
                                      discretization of the continuous time
                                      problem w. r. t. the time points given 
                                      in :math:`t_\text{N}`; possible values are
                                      "collocation" (default) and
                                      "multiple_shooting"
        :type discretization_method: str

        Depending on the discretization method specified in
        `discretization_method`, the following parameters can be used
        for further specification:

        :param collocation_scheme: optional, scheme used for setting up the
                                   collocation polynomials,
                                   possible values are `radau` (default)
                                   and `legendre`
        :type collocation_scheme: str

        :param number_of_collocation_points: optional, order of collocation
                                             polynomials
                                             :math:`d \in \mathbb{Z}` (default
                                             values is 3)
        :type number_of_collocation_points: int


        :param integrator: optional, integrator to be used with multiple shooting.
                           See the CasADi documentation for a list of
                           all available integrators. As a default, `cvodes`
                           is used.
        :type integrator: str

        :param integrator_options: optional, options to be passed to the CasADi
                                   integrator used with multiple shooting
                                   (see the CasADi documentation for a list of
                                   all possible options)
        :type integrator_options: dict

        The resulting parameter estimation problem has the following form:

        .. math::

            \begin{aligned}
                \text{arg}\,\underset{p, x, v, \epsilon_\text{u}}{\text{min}} & & \frac{1}{2} \| R(\cdot) \|_2^2 &\\
                \text{subject to:} & & v_\text{k} + y_\text{k} - \phi(x_\text{k}, p; u_\text{k}, q) & = 0 \hspace{1cm} k = 1, \dots, N\\
                & & g(x, p, \epsilon_\text{u}; u, q) & = 0 \\
                \text{with:} & & \begin{pmatrix} {w_\text{v}}^T & {w_{\epsilon_\text{u}}}^T \end{pmatrix}^{^\mathbb{1}/_\mathbb{2}} \begin{pmatrix} {v} \\ {\epsilon_\text{u}} \end{pmatrix} & = R \\
            \end{aligned}

        while :math:`g(\cdot)` contains the discretized system dynamics
        according to the specified discretization method. If the system is
        non-dynamic, it only contains the user-provided equality constraints.

        '''

        intro()

        self._discretize_system( \
            system, time_points, discretization_method, **kwargs)

        self._apply_controls_to_discretization(udata, qdata)

        self._set_optimization_variables()

        self._set_optimization_variables_initials(pinit, xinit)

        self._set_measurement_data(ydata)

        self._set_weightings(wv, weps_u)

        self._set_measurement_deviations()

        self._setup_residuals()

        self._setup_constraints()

        self._setup_objective()

        self._setup_nlp()
コード例 #14
0
ファイル: resume.py プロジェクト: kinsei/resume


import platform
from termcolor import colored
import os
import intro
import main
import subprocess
opsys = platform.system()

# If OS is Windows inform user of limitation
if opsys == 'Windows':
    
    print colored("This was written for Unix based opperating systems, however it will still workon Windows.", 'red')
    print colored("You will miss some of the functionality. Running this on Linux will give you best results.", 'green')


#########################
## This is the welcome ##
#########################


intro.intro()
main.menu()
subprocess.call("clear")
コード例 #15
0
ファイル: doe.py プロジェクト: MannyKayy/casiopeia
    def __init__(self, system, time_points, \
        uinit = None, umin = None, umax = None, \
        qinit = None, qmin = None, qmax = None, \
        pdata = None, x0 = None, \
        xmin = None, xmax = None, \
        wv = None, weps_u = None, \
        discretization_method = "collocation", \
        optimality_criterion = "A", **kwargs):

        r'''
        :raises: AttributeError, NotImplementedError

        :param system: system considered for parameter estimation, specified
                       using the :class:`casiopeia.system.System` class
        :type system: casiopeia.system.System

        :param time_points: time points :math:`t_\text{N} \in \mathbb{R}^\text{N}`
                   used to discretize the continuous time problem. Controls
                   will be applied at the first :math:`N-1` time points,
                   while measurements take place at all :math:`N` time points.
        :type time_points: numpy.ndarray, casadi.DMatrix, list

        :param umin: optional, lower bounds of the time-varying controls
                   :math:`u_\text{min} \in \mathbb{R}^{\text{n}_\text{u}}`;
                   if not values are given, :math:`-\infty` will be used
        :type umin: numpy.ndarray, casadi.DMatrix

        :param umax: optional, upper bounds of the time-vaying controls 
                   :math:`u_\text{max} \in \mathbb{R}^{\text{n}_\text{u}}`;
                   if not values are given, :math:`\infty` will be used
        :type umax: numpy.ndarray, casadi.DMatrix

        :param uinit: optional, initial guess for the values of the time-varying controls
                   :math:`u_\text{N} \in \mathbb{R}^{\text{n}_\text{u} \times \text{N}-1}`
                   that (might) change at the switching time points;
                   if no values are given, 0 will be used; note that a poorly
                   or wrongly chosen initial guess can cause the optimization
                   to fail, and note that the
                   the second dimension of :math:`u_N` is :math:`N-1` and not
                   :math:`N`, since there is no control value applied at the
                   last time point
        :type uinit: numpy.ndarray, casadi.DMatrix

        :param qmin: optional, lower bounds of the time-constant controls
                   :math:`q_\text{min} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, :math:`-\infty` will be used
        :type qmin: numpy.ndarray, casadi.DMatrix

        :param qmax: optional, upper bounds of the time-constant controls
                   :math:`q_\text{max} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, :math:`\infty` will be used
        :type qmax: numpy.ndarray, casadi.DMatrix

        :param qinit: optional, initial guess for the optimal values of the
                   time-constant controls
                   :math:`q_\text{init} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, 0 will be used; note that a poorly
                   or wrongly chosen initial guess can cause the optimization
                   to fail
        :type qinit: numpy.ndarray, casadi.DMatrix

        :param pdata: values of the time-constant parameters 
                      :math:`p \in \mathbb{R}^{\text{n}_\text{p}}`
        :type pdata: numpy.ndarray, casadi.DMatrix

        :param x0: state values :math:`x_0 \in \mathbb{R}^{\text{n}_\text{x}}`
                   at the first time point :math:`t_0`
        :type x0: numpy.ndarray, casadi.DMatrix, list

        :param xmin: optional, lower bounds of the states
                      :math:`x_\text{min} \in \mathbb{R}^{\text{n}_\text{x}}`;
                      if no value is given, :math:`-\infty` will be used
        :type xmin: numpy.ndarray, casadi.DMatrix

        :param xmax: optional, lower bounds of the states
                      :math:`x_\text{max} \in \mathbb{R}^{\text{n}_\text{x}}`;
                      if no value is given, :math:`\infty` will be used
        :type xmax: numpy.ndarray, casadi.DMatrix 

        :param wv: weightings for the measurements
                   :math:`w_\text{v} \in \mathbb{R}^{\text{n}_\text{y} \times \text{N}}`
        :type wv: numpy.ndarray, casadi.DMatrix

        :param weps_u: weightings for the input errors
                   :math:`w_{\epsilon_\text{u}} \in \mathbb{R}^{\text{n}_{\epsilon_\text{u}}}`
                   (only necessary
                   if input errors are used within ``system``)
        :type weps_u: numpy.ndarray, casadi.DMatrix    

        :param discretization_method: optional, the method that shall be used for
                                      discretization of the continuous time
                                      problem w. r. t. the time points given 
                                      in :math:`t_\text{N}`; possible values are
                                      "collocation" (default) and
                                      "multiple_shooting"
        :type discretization_method: str

        :param optimality_criterion: optional, the information function
                                    :math:`I_\text{X}(\cdot)` to be used on the 
                                    covariance matrix, possible values are
                                    `A` (default) and `D`, while

                                    .. math ::

                                        \begin{aligned}
                                          I_\text{A}(\Sigma_\text{p}) & = \frac{1}{n_\text{p}} \text{Tr}(\Sigma_\text{p}),\\
                                          I_\text{D}(\Sigma_\text{p}) & = \begin{vmatrix} \Sigma_\text{p} \end{vmatrix} ^{\frac{1}{n_\text{p}}},
                                        \end{aligned}

                                    for further information see e. g. [#f1]_

        :type optimality_criterion: str

        Depending on the discretization method specified in
        `discretization_method`, the following parameters can be used
        for further specification:

        :param collocation_scheme: optional, scheme used for setting up the
                                   collocation polynomials,
                                   possible values are `radau` (default)
                                   and `legendre`
        :type collocation_scheme: str

        :param number_of_collocation_points: optional, order of collocation
                                             polynomials
                                             :math:`d \in \mathbb{Z}` (default
                                             values is 3)
        :type number_of_collocation_points: int


        :param integrator: optional, integrator to be used with multiple shooting.
                           See the CasADi documentation for a list of
                           all available integrators. As a default, `cvodes`
                           is used.
        :type integrator: str

        :param integrator_options: optional, options to be passed to the CasADi
                                   integrator used with multiple shooting
                                   (see the CasADi documentation for a list of
                                   all possible options)
        :type integrator_options: dict

        You do not need to specify initial guesses for the estimated states,
        since these are obtained with a system simulation using the initial
        states and the provided initial guesses for the controls.

        The resulting optimization problem has the following form:

        .. math::

            \begin{aligned}
                \text{arg}\,\underset{u, q, x}{\text{min}} & & I(\Sigma_{\text{p}}(x, u, q; p)) &\\
                \text{subject to:} & & g(x, u, q; p) & = 0\\
                & & u_\text{min} \leq u_\text{k} & \leq u_\text{max} \hspace{1cm} k = 1, \dots, N-1\\
                & & x_\text{min} \leq x_\text{k}  & \leq x_\text{max} \hspace{1cm} k = 1, \dots, N\\
                & & x_1 \leq x(t_1) & \leq x_1
            \end{aligned}

        where :math:`\Sigma_p = \text{Cov}(p)` and :math:`g(\cdot)` contains the
        discretized system dynamics
        according to the specified discretization method. If the system is
        non-dynamic, it only contains the user-provided equality constraints.

        .. rubric:: References

        .. [#f1] |linkf1|_
        
        .. _linkf1: http://ginger.iwr.uni-heidelberg.de/vplan/images/5/54/Koerkel2002.pdf

        .. |linkf1| replace:: *Körkel, Stefan: Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen, PhD Thesis, Heidelberg university, 2002, pages 74/75.*

        '''

        intro()

        self._discretize_system( \
            system, time_points, discretization_method, **kwargs)

        self._set_parameter_guess(pdata)

        self._apply_parameters_to_discretization()

        self._set_optimization_variables()

        self._set_optimization_variables_initials(qinit, x0, uinit)

        self._set_optimization_variables_lower_bounds(umin, qmin, xmin, x0)

        self._set_optimization_variables_upper_bounds(umax, qmax, xmax, x0)

        self._set_measurement_data()

        self._set_weightings(wv, weps_u)

        self._set_measurement_deviations()

        self._set_cov_matrix_derivative_directions()

        self._setup_constraints()

        self._setup_gauss_newton_lagrangian_hessian()

        self._setup_covariance_matrix()

        self._setup_covariance_matrix_for_evaluation()

        self._set_optimiality_criterion(optimality_criterion)

        self._setup_objective()

        self._apply_parameters_to_objective()

        self._setup_nlp()
コード例 #16
0
ファイル: pokemon.py プロジェクト: zgrove/pokemon_gridiron
#!/usr/bin/env python3
from intro import intro
from choose1 import prebattle
from battle import *

rival_name = intro()

answer = 'y'
while (answer == 'y'):
	chosen_Pokemon = prebattle(rival_name)
	battle([chosen_Pokemon[0]], rival_name, [chosen_Pokemon[1]])
	answer = input("\nWould you like to battle again? ('y' or 'n') ")
	while (answer != 'n' and answer != 'y'):
		answer = input("That's not a valid answer. Would you like to battle again? ('y' or 'n') ")

print("\nThanks for playing!")
コード例 #17
0
ファイル: experiment.py プロジェクト: erredece/Experiment
 def intro(self):
     i.intro(self)
コード例 #18
0
    controls.setConfig(c)
except: 
    controls.writeConfig('controls_bak.cfg', c)
    controls.setConfig(controls.defaultControls) #any fails (missing gamepad usually), default to original controls


introMusic = ika.Sound('music/Existing.s3m')
#while not controls.attack():
#        ika.Video.DrawRect(0,0,320,240,0)
#        ika.Video.ShowPage()
#        ika.Input.Update()
sound.fader.kill()
#ika.Delay(5)
introMusic.Play()
#ika.Delay(5)
intro()

    
while True:        
        killmusic=True
        if saveload.quicksave:
            result = 3
        else: 
            result = menu()
        engine = Engine()
        
        if result == 0: #New Game
            introMusic.Pause()
            sound.fader.kill()
            engine.beginNewGame()
            if killmusic:
コード例 #19
0
ファイル: doe.py プロジェクト: adbuerger/casiopeia
    def __init__(self, system, time_points, \
        uinit = None, umin = None, umax = None, \
        qinit = None, qmin = None, qmax = None, \
        pdata = None, x0 = None, \
        xmin = None, xmax = None, \
        wv = None, weps_u = None, \
        discretization_method = "collocation", \
        optimality_criterion = "A", **kwargs):

        r'''
        :raises: AttributeError, NotImplementedError

        :param system: system considered for parameter estimation, specified
                       using the :class:`casiopeia.system.System` class
        :type system: casiopeia.system.System

        :param time_points: time points :math:`t_\text{N} \in \mathbb{R}^\text{N}`
                   used to discretize the continuous time problem. Controls
                   will be applied at the first :math:`N-1` time points,
                   while measurements take place at all :math:`N` time points.
        :type time_points: numpy.ndarray, casadi.DMatrix, list

        :param umin: optional, lower bounds of the time-varying controls
                   :math:`u_\text{min} \in \mathbb{R}^{\text{n}_\text{u}}`;
                   if not values are given, :math:`-\infty` will be used
        :type umin: numpy.ndarray, casadi.DMatrix

        :param umax: optional, upper bounds of the time-vaying controls 
                   :math:`u_\text{max} \in \mathbb{R}^{\text{n}_\text{u}}`;
                   if not values are given, :math:`\infty` will be used
        :type umax: numpy.ndarray, casadi.DMatrix

        :param uinit: optional, initial guess for the values of the time-varying controls
                   :math:`u_\text{N} \in \mathbb{R}^{\text{n}_\text{u} \times \text{N}-1}`
                   that (might) change at the switching time points;
                   if no values are given, 0 will be used; note that a poorly
                   or wrongly chosen initial guess can cause the optimization
                   to fail, and note that the
                   the second dimension of :math:`u_N` is :math:`N-1` and not
                   :math:`N`, since there is no control value applied at the
                   last time point
        :type uinit: numpy.ndarray, casadi.DMatrix

        :param qmin: optional, lower bounds of the time-constant controls
                   :math:`q_\text{min} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, :math:`-\infty` will be used
        :type qmin: numpy.ndarray, casadi.DMatrix

        :param qmax: optional, upper bounds of the time-constant controls
                   :math:`q_\text{max} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, :math:`\infty` will be used
        :type qmax: numpy.ndarray, casadi.DMatrix

        :param qinit: optional, initial guess for the optimal values of the
                   time-constant controls
                   :math:`q_\text{init} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, 0 will be used; note that a poorly
                   or wrongly chosen initial guess can cause the optimization
                   to fail
        :type qinit: numpy.ndarray, casadi.DMatrix

        :param pdata: values of the time-constant parameters 
                      :math:`p \in \mathbb{R}^{\text{n}_\text{p}}`
        :type pdata: numpy.ndarray, casadi.DMatrix

        :param x0: state values :math:`x_0 \in \mathbb{R}^{\text{n}_\text{x}}`
                   at the first time point :math:`t_0`
        :type x0: numpy.ndarray, casadi.DMatrix, list

        :param xmin: optional, lower bounds of the states
                      :math:`x_\text{min} \in \mathbb{R}^{\text{n}_\text{x}}`;
                      if no value is given, :math:`-\infty` will be used
        :type xmin: numpy.ndarray, casadi.DMatrix

        :param xmax: optional, lower bounds of the states
                      :math:`x_\text{max} \in \mathbb{R}^{\text{n}_\text{x}}`;
                      if no value is given, :math:`\infty` will be used
        :type xmax: numpy.ndarray, casadi.DMatrix 

        :param wv: weightings for the measurements
                   :math:`w_\text{v} \in \mathbb{R}^{\text{n}_\text{y} \times \text{N}}`
        :type wv: numpy.ndarray, casadi.DMatrix

        :param weps_u: weightings for the input errors
                   :math:`w_{\epsilon_\text{u}} \in \mathbb{R}^{\text{n}_{\epsilon_\text{u}}}`
                   (only necessary
                   if input errors are used within ``system``)
        :type weps_u: numpy.ndarray, casadi.DMatrix    

        :param discretization_method: optional, the method that shall be used for
                                      discretization of the continuous time
                                      problem w. r. t. the time points given 
                                      in :math:`t_\text{N}`; possible values are
                                      "collocation" (default) and
                                      "multiple_shooting"
        :type discretization_method: str

        :param optimality_criterion: optional, the information function
                                    :math:`I_\text{X}(\cdot)` to be used on the 
                                    covariance matrix, possible values are
                                    `A` (default) and `D`, while

                                    .. math ::

                                        \begin{aligned}
                                          I_\text{A}(\Sigma_\text{p}) & = \frac{1}{n_\text{p}} \text{Tr}(\Sigma_\text{p}),\\
                                          I_\text{D}(\Sigma_\text{p}) & = \begin{vmatrix} \Sigma_\text{p} \end{vmatrix} ^{\frac{1}{n_\text{p}}},
                                        \end{aligned}

                                    for further information see e. g. [#f1]_

        :type optimality_criterion: str

        Depending on the discretization method specified in
        `discretization_method`, the following parameters can be used
        for further specification:

        :param collocation_scheme: optional, scheme used for setting up the
                                   collocation polynomials,
                                   possible values are `radau` (default)
                                   and `legendre`
        :type collocation_scheme: str

        :param number_of_collocation_points: optional, order of collocation
                                             polynomials
                                             :math:`d \in \mathbb{Z}` (default
                                             values is 3)
        :type number_of_collocation_points: int


        :param integrator: optional, integrator to be used with multiple shooting.
                           See the CasADi documentation for a list of
                           all available integrators. As a default, `cvodes`
                           is used.
        :type integrator: str

        :param integrator_options: optional, options to be passed to the CasADi
                                   integrator used with multiple shooting
                                   (see the CasADi documentation for a list of
                                   all possible options)
        :type integrator_options: dict

        You do not need to specify initial guesses for the estimated states,
        since these are obtained with a system simulation using the initial
        states and the provided initial guesses for the controls.

        The resulting optimization problem has the following form:

        .. math::

            \begin{aligned}
                \text{arg}\,\underset{u, q, x}{\text{min}} & & I(\Sigma_{\text{p}}(x, u, q; p)) &\\
                \text{subject to:} & & g(x, u, q; p) & = 0\\
                & & u_\text{min} \leq u_\text{k} & \leq u_\text{max} \hspace{1cm} k = 1, \dots, N-1\\
                & & x_\text{min} \leq x_\text{k}  & \leq x_\text{max} \hspace{1cm} k = 1, \dots, N\\
                & & x_1 \leq x(t_1) & \leq x_1
            \end{aligned}

        where :math:`\Sigma_p = \text{Cov}(p)` and :math:`g(\cdot)` contains the
        discretized system dynamics
        according to the specified discretization method. If the system is
        non-dynamic, it only contains the user-provided equality constraints.

        .. rubric:: References

        .. [#f1] |linkf1|_
        
        .. _linkf1: http://ginger.iwr.uni-heidelberg.de/vplan/images/5/54/Koerkel2002.pdf

        .. |linkf1| replace:: *Körkel, Stefan: Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen, PhD Thesis, Heidelberg university, 2002, pages 74/75.*

        '''

        intro()

        self._discretize_system( \
            system, time_points, discretization_method, **kwargs)

        self._set_parameter_guess(pdata)

        self._apply_parameters_to_discretization()

        self._set_optimization_variables()

        self._set_optimization_variables_initials(qinit, x0, uinit)

        self._set_optimization_variables_lower_bounds(umin, qmin, xmin, x0)

        self._set_optimization_variables_upper_bounds(umax, qmax, xmax, x0)

        self._set_measurement_data()

        self._set_weightings(wv, weps_u)

        self._set_measurement_deviations()

        self._set_cov_matrix_derivative_directions()

        self._setup_constraints()

        self._setup_gauss_newton_lagrangian_hessian()

        self._setup_covariance_matrix()

        self._setup_covariance_matrix_for_evaluation()

        self._set_optimiality_criterion(optimality_criterion)

        self._setup_objective()

        self._apply_parameters_to_objective()

        self._setup_nlp()
コード例 #20
0
ファイル: title.py プロジェクト: Sunlight4/SMGB-new
flip=pygame.display.flip
blit=screen.blit
load=pygame.image.load
fill=screen.fill
#path list begins here
title_path=resources.get_resource_path("FinalBowserCastleSMG2.ogg", "music/Areas")
titlebg_path=resources.get_resource_path("SuperMarioGalaxyTitle.png", "images")
#path list ends here
music.load(title_path)
music.set_volume(1)
music.play(-1)
titlebg=load(titlebg_path)
fill([0,0,0])
blit(titlebg, [0,0])
flip()
run=1
q=0
clear=0
if options.test:clear=1
while run:
    for event in pygame.event.get():
        if event.type==pygame.QUIT:
            q=1
            run=0
        elif event.type==pygame.KEYDOWN:
            if event.key==pygame.K_x:
                run=0
if q:pygame.quit()
if clear:resources.done()
intro.intro(screen)
コード例 #21
0
ファイル: main.py プロジェクト: Sylvester96/textbasedgame
def game():
    playAgain = "yes"
    while playAgain == "yes" or playAgain == "y":
        intro.intro()
        playAgain = input("Do you want to play again? (yes or y to continue playing): ")
コード例 #22
0
ファイル: app.py プロジェクト: nikl1425/Tetris
 def __init__(self):
     self._running = True
     self.size = self.width, self.height = 640, 400
     self._display_surf = pygame.display.set_mode(self.size)
     self.intro_state = intro(self._display_surf, self.width, self.height)
     self.game_state = Game(self._display_surf, self.width, self.height)
コード例 #23
0
ファイル: run.py プロジェクト: MoonWatcher582/KTB
import pygame, sys
from intro import intro
from utils import *
from sprites import *
from pygame.locals import *
from random import randint

intro()
DISPLAYSURF = pygame.display.set_mode((800, 593))
pygame.display.set_caption("Kill the Baby!")
background = load_image("KTBbackground2.png")
BASIN = pygame.Rect((20, 391), (250, 180))
TOP_RIGHT =     pygame.Rect((680, 20), (100, 100))
CENTER_RIGHT =  pygame.Rect((680, 220), (100, 100))
BOTTOM_RIGHT =  pygame.Rect((680, 420), (100, 100))
TOP_CENTER =    pygame.Rect((560, 20), (100, 100))
CENTER =        pygame.Rect((560, 220), (100, 100))
BOTTOM_CENTER = pygame.Rect((560, 420), (100, 100))

# Constants
BASIN_ITEM = 0
GARLIC_ITEM = 1
STAKE_ITEM = 2
FISH_ITEM = 3
SILVER_ITEM = 4
SWATTER_ITEM = 5
RAZOR_ITEM = 6

BASE_TYPE = 0
WERE_TYPE = 1
VAMP_TYPE = 2
コード例 #24
0
ファイル: system.py プロジェクト: MannyKayy/casiopeia
    def __init__(self, \
             u = ci.mx_sym("u", 0), \
             q = ci.mx_sym("q", 0), \
             p = None, \
             x = ci.mx_sym("x", 0), \
             eps_u = ci.mx_sym("eps_u", 0), \
             phi = None, \
             f = ci.mx_sym("f", 0), \
             g = ci.mx_sym("g", 0)):
        r'''
        :raises: TypeError, NotImplementedError

        :param u: time-varying controls :math:`u \in \mathbb{R}^{\text{n}_\text{u}}` that are applied piece-wise-constant for each control intervals, and therefor can change from on interval to another, e. g. motor dutycycles, temperatures, massflows (optional)
        :type u: casadi.casadi.MX

        :param q: time-constant controls :math:`q \in \mathbb{R}^{\text{n}_\text{q}}` that are constant over time, e. g. initial mass concentrations of reactants, elevation angles (optional)
        :type q: casadi.casadi.MX

        :param p: unknown parameters :math:`p \in \mathbb{R}^{\text{n}_\text{p}}`
        :type p: casadi.casadi.MX

        :param x: differential states :math:`x \in \mathbb{R}^{\text{n}_\text{x}}` (optional)
        :type x: casadi.casadi.MX

        :param eps_u: input errors :math:`\epsilon_{u} \in \mathbb{R}^{\text{n}_{\epsilon_\text{u}}}` (optional)
        :type eps_u: casadi.casadi.MX

        :param phi: output function :math:`\phi(u, q, x, p) = y \in \mathbb{R}^{\text{n}_\text{y}}`
        :type phi: casadi.casadi.MX

        :param f: explicit system of ODEs :math:`f(u, q, x, p, \epsilon_\text{u}) = \dot{x} \in \mathbb{R}^{\text{n}_\text{x}}` (optional)
        :type f: casadi.casadi.MX

        :param g: equality constraints :math:`g(u, q, p) = 0 \in \mathbb{R}^{\text{n}_\text{g}}` (optional)
        :type g: casadi.casadi.MX


        Depending on the inputs the user provides, the :class:`System`
        is interpreted as follows:


        **Non-dynamic system** (x = None):

        .. math::

            y = \phi(u, q, p)

            0 = g(u, q, p).


        **Explicit ODE system** (x != None):

        .. math::

            y & = & \phi(u, q, x, p) \\

            \dot{x}  & = & f(u, q, x, p, \epsilon_\text{u}).


        '''

        intro()

        print('\n' + '# ' + 23 * '-' + \
            ' casiopeia system definition ' + 22 * '-' + ' #')
        print('\nStarting system definition ...')

        self.u = u
        self.q = q
        self.p = p

        self.x = x

        self.eps_u = eps_u

        self.phi = phi
        self.f = f
        self.g = g

        self.__system_validation()
コード例 #25
0
ファイル: demo.py プロジェクト: ralferoo/breaking-baud
def makedemo(dst,addfile,cycles_per_line):
	cdt=mainfile(cycles_per_line)
	writer=screen_writer(cdt,"compress.pickle")

#	for i in xrange(0,256):
#		cdt.block(0xc000+i,1,[i])
#	cdt.gap(1000)

	name="build/breaking_baud-%2d.exe"%(cycles_per_line)
	#t=gmtime()
	#cdt.loader(name,"BROKEN BAUD %04d-%02d-%02d"%(t.tm_year,t.tm_mon,t.tm_mday),0x8000,0x8000)
	cdt.loader(name,"BREAKING BAUD",0x8000,0x8000)
	cdt.gap(10)

	musicplayer ="build/arkos_player-%d.bin"%(cycles_per_line) 
	music_block_size = 94

	started = False
	player=cdt.get_data_as_blocks(musicplayer, player_base,music_block_size)
	music=cdt.get_data_as_blocks("music/hardstyle-4000.bin", 0x4000, music_block_size)
	play = music_switch(cdt,player,music)

	# send the intro sequence with music interleaved
	pen=True
	if True or not testing:
		idx = 0
		gen=intro()
		for i in gen:
			if i <> None:
				print "Creating intro image %d"%idx
				try: i.save("build/intro-%02d.gif"%idx)
				except: pass
				writer.add("Intro %d"%idx,i,1000,False)
				idx = idx+1
			else:
				if pen:
					cdt.exec_code("build/remove_pen1-%d.bin"%(cycles_per_line), applet_base)
					writer.reset("Intro %d"%idx,next(gen))
					pen = False
				else:
					play.first()
			
			# interleave music
			play.block()
	
		# send remaining music
		play.first()

		play.load("littlesailor")
		cdt.gap(2000)
		post_intro(cdt,writer,text_base,font_base,text_out_base)
		#writer.present(1000)

#		cdt.write(dst)
#		writer.save()
#		sys.exit(0)

	if not testing:
		cdt.exec_code("build/normal_to_overscan-%d.bin"%(cycles_per_line), applet_base)
		play.play()
		for i in xrange(1,lk_images+1): #74+1, ralf:53+1, 4ab:72+1, 5: 57+1
			f="sequence/lightkeeper/%02d.gif"%i
			print "Adding image %s"%(f)
			writer.add_overscan(f,Image.open(f),BLOCK_SIZE,False)
			if i>=54: cdt.gap(0) #4ab:70, 5:54
			#writer.add(f,Image.open(f).crop((64,72,384,272)))

		cdt.gap(5000)
		#cdt.load_data("music/cr4sh-5000.bin", 0x5000)
		play.load("cr4sh")
		writer.present_overscan(0)
		#cdt.start_music(0x5000)
		play.play()
		cdt.gap(500)
		cdt.exec_code("build/overscan_to_wideonly-%d.bin"%(cycles_per_line), applet_base)

	if not testing:
		for i in xrange(1,term_images+1): #16+1
			f="sequence/bin_renderin/%02d.gif"%i
			print "Adding image %s"%(f)
			writer.add_wideonly(f,Image.open(f),BLOCK_SIZE,False)
			cdt.gap(0)
		if True:
			cdt.gap(5000)
			play.load("bonito")
			#cdt.load_data("music/bonito-4000.bin", 0x4000)
			writer.present_wideonly(0)
			#cdt.start_music(0x4000)
			play.play()
			cdt.gap(500)
			cdt.exec_code("build/wideonly_to_normal-%d.bin"%(cycles_per_line), applet_base)
	

	if not testing:
		for i in xrange(1,rose_images+1):
			f="sequence/rose/%02d.gif"%i
			print "Adding image %s"%(f)
			writer.add(f,half(Image.open(f)),BLOCK_SIZE,False)
			cdt.gap(0)

		if True:
			cdt.gap(5000)
			play.load("seagulls")
			#cdt.load_data("music/remember david-5000.bin", 0x5000)
			writer.present(0)
			#cdt.start_music(0x5000)
			play.play()
			cdt.gap(500)
	
	# send the outtro sequence with music interleaved
	if True:
		idx = 0
		outro(cdt,writer,text_base,font_base,text_out_base)
		cdt.gap(10000)
		play.load("silence")
		play.play()
		cdt.gap(1000)
		cdt.exec_code("build/reboot-%d.bin"%(cycles_per_line), applet_base)
	
	cdt.write(dst)
	writer.save()
コード例 #26
0
ファイル: main.py プロジェクト: geecrypt/GameOfLife
SIZE_L = 500
SIZE_TEST = 3
TESTING = False

# initialize all pygame modules
pygame.init()

# create display surface
screen = pygame.display.set_mode((SIZE_L, SIZE_L))
# test_arr = pygame.PixelArray(screen)
# test_arr[:][0] = 0xFFFFFF
# test_arr.close()
# pygame.display.flip()
# input('test')

intro(screen)

# create small working surface
small_screen = pygame.Surface((SIZE_S, SIZE_S))

# set inital state
#cells.populate_surface(screen, small_screen)
mouse.set_state(screen, small_screen)

# play the game
run = True
while (run):
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            run = False
        if event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
コード例 #27
0
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


local_css("./css/style.css")

st.title('El coche eléctrico en Europa')

st.sidebar.text('Navegación')

menu = st.sidebar.selectbox('Menu:',
                            options=['Intro', 'Contaminación', 'Ventas', 'Conclusiones'])


config = {'displayModeBar': False}

if menu == 'Intro':
    intro.intro()
    # st.sidebar.button("Hablemos de contaminacion")

elif menu == 'Contaminación':
    pollution.pollution(config)

elif menu == 'Ventas':
    sales.sales(config)

elif menu == 'Conclusiones':
    conclusion.conclusion()

else:
    intro.intro()
コード例 #28
0
ファイル: pe.py プロジェクト: MannyKayy/casiopeia
    def __init__(self, system, time_points, \
        udata = None, qdata = None,\
        ydata = None, \
        pinit = None, xinit = None, \
        wv = None, weps_u = None, \
        discretization_method = "collocation", **kwargs):
        r'''
        :raises: AttributeError, NotImplementedError

        :param system: system considered for parameter estimation, specified
                       using the :class:`casiopeia.system.System` class
        :type system: casiopeia.system.System

        :param time_points: time points :math:`t_\text{N} \in \mathbb{R}^\text{N}`
                   used to discretize the continuous time problem. Controls
                   will be applied at the first :math:`N-1` time points,
                   while measurements take place at all :math:`N` time points.
        :type time_points: numpy.ndarray, casadi.DMatrix, list

        :param udata: optional, values for the time-varying controls 
                   :math:`u_\text{N} \in \mathbb{R}^{\text{n}_\text{u} \times \text{N}-1}`
                   that can change at the switching time points;
                   if no values are given, 0 will be used; note that the
                   the second dimension of :math:`u_\text{N}` is :math:`N-1` and not
                   :math:`N`, since there is no control value applied at the
                   last time point
        :type udata: numpy.ndarray, casadi.DMatrix

        :param qdata: optional, values for the time-constant controls
                   :math:`q_\text{N} \in \mathbb{R}^{\text{n}_\text{q}}`;
                   if not values are given, 0 will be used
        :type qdata: numpy.ndarray, casadi.DMatrix

        :param ydata: values for the measurements at the switching time points
                   :math:`y_\text{N} \in \mathbb{R}^{\text{n}_\text{y} \times \text{N}}`
        :type ydata: numpy.ndarray, casadi.DMatrix    

        :param wv: weightings for the measurements
                   :math:`w_\text{v} \in \mathbb{R}^{\text{n}_\text{y} \times \text{N}}`
        :type wv: numpy.ndarray, casadi.DMatrix    

        :param weps_u: weightings for the input errors
                   :math:`w_{\epsilon_\text{u}} \in \mathbb{R}^{\text{n}_{\epsilon_\text{u}}}`
                   (only necessary
                   if input errors are used within ``system``)
        :type weps_u: numpy.ndarray, casadi.DMatrix    

        :param pinit: optional, initial guess for the values of the
                      parameters that will be estimated
                      :math:`p_\text{init} \in \mathbb{R}^{\text{n}_\text{p}}`; if no
                      value is given, 0 will be used; note that a poorly or
                      wrongly chosen initial guess can cause the estimation
                      to fail
        :type pinit: numpy.ndarray, casadi.DMatrix

        :param xinit: optional, initial guess for the values of the
                      states that will be estimated
                      :math:`x_\text{init} \in \mathbb{R}^{\text{n}_\text{x} \times \text{N}}`;
                      if no value is given, 0 will be used; note that a poorly
                      or wrongly chosen initial guess can cause the estimation
                      to fail
        :type xinit: numpy.ndarray, casadi.DMatrix

        :param discretization_method: optional, the method that shall be used for
                                      discretization of the continuous time
                                      problem w. r. t. the time points given 
                                      in :math:`t_\text{N}`; possible values are
                                      "collocation" (default) and
                                      "multiple_shooting"
        :type discretization_method: str

        Depending on the discretization method specified in
        `discretization_method`, the following parameters can be used
        for further specification:

        :param collocation_scheme: optional, scheme used for setting up the
                                   collocation polynomials,
                                   possible values are `radau` (default)
                                   and `legendre`
        :type collocation_scheme: str

        :param number_of_collocation_points: optional, order of collocation
                                             polynomials
                                             :math:`d \in \mathbb{Z}` (default
                                             values is 3)
        :type number_of_collocation_points: int


        :param integrator: optional, integrator to be used with multiple shooting.
                           See the CasADi documentation for a list of
                           all available integrators. As a default, `cvodes`
                           is used.
        :type integrator: str

        :param integrator_options: optional, options to be passed to the CasADi
                                   integrator used with multiple shooting
                                   (see the CasADi documentation for a list of
                                   all possible options)
        :type integrator_options: dict

        The resulting parameter estimation problem has the following form:

        .. math::

            \begin{aligned}
                \text{arg}\,\underset{p, x, v, \epsilon_\text{u}}{\text{min}} & & \frac{1}{2} \| R(\cdot) \|_2^2 &\\
                \text{subject to:} & & v_\text{k} + y_\text{k} - \phi(x_\text{k}, p; u_\text{k}, q) & = 0 \hspace{1cm} k = 1, \dots, N\\
                & & g(x, p, \epsilon_\text{u}; u, q) & = 0 \\
                \text{with:} & & \begin{pmatrix} {w_\text{v}}^T & {w_{\epsilon_\text{u}}}^T \end{pmatrix}^{^\mathbb{1}/_\mathbb{2}} \begin{pmatrix} {v} \\ {\epsilon_\text{u}} \end{pmatrix} & = R \\
            \end{aligned}

        while :math:`g(\cdot)` contains the discretized system dynamics
        according to the specified discretization method. If the system is
        non-dynamic, it only contains the user-provided equality constraints.

        '''

        intro()

        self._discretize_system( \
            system, time_points, discretization_method, **kwargs)

        self._apply_controls_to_discretization(udata, qdata)

        self._set_optimization_variables()

        self._set_optimization_variables_initials(pinit, xinit)

        self._set_measurement_data(ydata)

        self._set_weightings(wv, weps_u)

        self._set_measurement_deviations()

        self._setup_residuals()

        self._setup_constraints()

        self._setup_objective()

        self._setup_nlp()
コード例 #29
0
ファイル: main.py プロジェクト: udhy/Donkey-Kong
import pygame
from intro import intro
from board import start
from board import board

if __name__ == "__main__":#whenever you run this file by actually running it ;)
	intro()#calls into from intro .py
	score = start(1 , 3, 0)	#start level1 from board.py start(level_number , life_given , initial_coins)
コード例 #30
0
ファイル: system.py プロジェクト: adbuerger/casiopeia
    def __init__(self, \
             u = ci.mx_sym("u", 0), \
             q = ci.mx_sym("q", 0), \
             p = None, \
             x = ci.mx_sym("x", 0), \
             eps_u = ci.mx_sym("eps_u", 0), \
             phi = None, \
             f = ci.mx_sym("f", 0), \
             g = ci.mx_sym("g", 0)):


        r'''
        :raises: TypeError, NotImplementedError

        :param u: time-varying controls :math:`u \in \mathbb{R}^{\text{n}_\text{u}}` that are applied piece-wise-constant for each control intervals, and therefor can change from on interval to another, e. g. motor dutycycles, temperatures, massflows (optional)
        :type u: casadi.casadi.MX

        :param q: time-constant controls :math:`q \in \mathbb{R}^{\text{n}_\text{q}}` that are constant over time, e. g. initial mass concentrations of reactants, elevation angles (optional)
        :type q: casadi.casadi.MX

        :param p: unknown parameters :math:`p \in \mathbb{R}^{\text{n}_\text{p}}`
        :type p: casadi.casadi.MX

        :param x: differential states :math:`x \in \mathbb{R}^{\text{n}_\text{x}}` (optional)
        :type x: casadi.casadi.MX

        :param eps_u: input errors :math:`\epsilon_{u} \in \mathbb{R}^{\text{n}_{\epsilon_\text{u}}}` (optional)
        :type eps_u: casadi.casadi.MX

        :param phi: output function :math:`\phi(u, q, x, p) = y \in \mathbb{R}^{\text{n}_\text{y}}`
        :type phi: casadi.casadi.MX

        :param f: explicit system of ODEs :math:`f(u, q, x, p, \epsilon_\text{u}) = \dot{x} \in \mathbb{R}^{\text{n}_\text{x}}` (optional)
        :type f: casadi.casadi.MX

        :param g: equality constraints :math:`g(u, q, p) = 0 \in \mathbb{R}^{\text{n}_\text{g}}` (optional)
        :type g: casadi.casadi.MX


        Depending on the inputs the user provides, the :class:`System`
        is interpreted as follows:


        **Non-dynamic system** (x = None):

        .. math::

            y = \phi(u, q, p)

            0 = g(u, q, p).


        **Explicit ODE system** (x != None):

        .. math::

            y & = & \phi(u, q, x, p) \\

            \dot{x}  & = & f(u, q, x, p, \epsilon_\text{u}).


        '''


        intro()
        
        print('\n' + '# ' + 23 * '-' + \
            ' casiopeia system definition ' + 22 * '-' + ' #')
        print('\nStarting system definition ...')

        self.u = u
        self.q = q
        self.p = p

        self.x = x

        self.eps_u = eps_u

        self.phi = phi
        self.f = f
        self.g = g

        self.__system_validation()
コード例 #31
0
def makedemo(dst, addfile, cycles_per_line):
    cdt = mainfile(cycles_per_line)
    writer = screen_writer(cdt, "compress.pickle")

    #	for i in xrange(0,256):
    #		cdt.block(0xc000+i,1,[i])
    #	cdt.gap(1000)

    name = "build/breaking_baud-%2d.exe" % (cycles_per_line)
    #t=gmtime()
    #cdt.loader(name,"BROKEN BAUD %04d-%02d-%02d"%(t.tm_year,t.tm_mon,t.tm_mday),0x8000,0x8000)
    cdt.loader(name, "BREAKING BAUD", 0x8000, 0x8000)
    cdt.gap(10)

    musicplayer = "build/arkos_player-%d.bin" % (cycles_per_line)
    music_block_size = 94

    started = False
    player = cdt.get_data_as_blocks(musicplayer, player_base, music_block_size)
    music = cdt.get_data_as_blocks("music/hardstyle-4000.bin", 0x4000,
                                   music_block_size)
    play = music_switch(cdt, player, music)

    # send the intro sequence with music interleaved
    pen = True
    if True or not testing:
        idx = 0
        gen = intro()
        for i in gen:
            if i <> None:
                print "Creating intro image %d" % idx
                try:
                    i.save("build/intro-%02d.gif" % idx)
                except:
                    pass
                writer.add("Intro %d" % idx, i, 1000, False)
                idx = idx + 1
            else:
                if pen:
                    cdt.exec_code(
                        "build/remove_pen1-%d.bin" % (cycles_per_line),
                        applet_base)
                    writer.reset("Intro %d" % idx, next(gen))
                    pen = False
                else:
                    play.first()

            # interleave music
            play.block()

        # send remaining music
        play.first()

        play.load("littlesailor")
        cdt.gap(2000)
        post_intro(cdt, writer, text_base, font_base, text_out_base)
        #writer.present(1000)

#		cdt.write(dst)
#		writer.save()
#		sys.exit(0)

    if not testing:
        cdt.exec_code("build/normal_to_overscan-%d.bin" % (cycles_per_line),
                      applet_base)
        play.play()
        for i in xrange(1, lk_images + 1):  #74+1, ralf:53+1, 4ab:72+1, 5: 57+1
            f = "sequence/lightkeeper/%02d.gif" % i
            print "Adding image %s" % (f)
            writer.add_overscan(f, Image.open(f), BLOCK_SIZE, False)
            if i >= 54: cdt.gap(0)  #4ab:70, 5:54
            #writer.add(f,Image.open(f).crop((64,72,384,272)))

        cdt.gap(5000)
        #cdt.load_data("music/cr4sh-5000.bin", 0x5000)
        play.load("cr4sh")
        writer.present_overscan(0)
        #cdt.start_music(0x5000)
        play.play()
        cdt.gap(500)
        cdt.exec_code("build/overscan_to_wideonly-%d.bin" % (cycles_per_line),
                      applet_base)

    if not testing:
        for i in xrange(1, term_images + 1):  #16+1
            f = "sequence/bin_renderin/%02d.gif" % i
            print "Adding image %s" % (f)
            writer.add_wideonly(f, Image.open(f), BLOCK_SIZE, False)
            cdt.gap(0)
        if True:
            cdt.gap(5000)
            play.load("bonito")
            #cdt.load_data("music/bonito-4000.bin", 0x4000)
            writer.present_wideonly(0)
            #cdt.start_music(0x4000)
            play.play()
            cdt.gap(500)
            cdt.exec_code(
                "build/wideonly_to_normal-%d.bin" % (cycles_per_line),
                applet_base)

    if not testing:
        for i in xrange(1, rose_images + 1):
            f = "sequence/rose/%02d.gif" % i
            print "Adding image %s" % (f)
            writer.add(f, half(Image.open(f)), BLOCK_SIZE, False)
            cdt.gap(0)

        if True:
            cdt.gap(5000)
            play.load("seagulls")
            #cdt.load_data("music/remember david-5000.bin", 0x5000)
            writer.present(0)
            #cdt.start_music(0x5000)
            play.play()
            cdt.gap(500)

    # send the outtro sequence with music interleaved
    if True:
        idx = 0
        outro(cdt, writer, text_base, font_base, text_out_base)
        cdt.gap(10000)
        play.load("silence")
        play.play()
        cdt.gap(1000)
        cdt.exec_code("build/reboot-%d.bin" % (cycles_per_line), applet_base)

    cdt.write(dst)
    writer.save()
コード例 #32
0
from intro import intro
from input_parser import input_parser
from compressor import compressor
from printer import printer
from robo_browser import robo_browser
from misc_data import ListAlbum

# This is what runs the program. It calls multiple methods from different files to do so.
user_object = intro()
album_list = ListAlbum()
input_parser(user_object, album_list)
album_object = compressor(album_list)
printer(album_object)
robo_browser(album_object, user_object)