コード例 #1
0
def run_inverse():
    """Invert the remote measurement"""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_inversion.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    out = Output(config, iv)
    geom = None

    # Get our measurement from the simulation results, and invert
    rdn_meas, wl = spectrumLoad(config['input']['measured_radiance_file'])
    state_est = iv.invert(rdn_meas, geom, out)

    # Calculate uncertainties at the solution state, write result
    rfl_est, rdn_est, path_est, S_hat, K, G =\
        iv.forward_uncertainty(state_est, rdn_meas, geom)
    out.write_spectrum(state_est,
                       rfl_est,
                       rdn_est,
                       path_est,
                       rdn_meas,
                       rdn_sim=None,
                       geom=geom)
    assert True
    return state_est
コード例 #2
0
 def __init__(self, config, forward):
     """Initialize and apply defaults"""
     Inversion.__init__(self, config, forward)
     defaults = {'iterations': 10000, 'burnin': 200, 'method': 'MCMC',
                 'regularizer': 1e-3, 'proposal_scaling': 0.01,
                 'verbose': True, 'restart_every': 2000}
     for key, val in defaults.items():
         if key in config:
             setattr(self, key, config[key])
         else:
             setattr(self, key, val)
コード例 #3
0
def run_forward():
    """Simulate the remote measurement of a spectrally uniform surface"""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_forward.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    io = IO(config, fm, iv, [0], [0])

    # Simulate a measurement and write result
    for row, col, meas, geom, configs in io:
        states = iv.invert(meas, geom)
        io.write_spectrum(row, col, states, meas, geom)

    assert True
    return states[0]
コード例 #4
0
    def invert(self, rdn_meas, geom, out=None, init=None):
        """Inverts a meaurement. Returns an array of state vector samples.
           Similar to Inversion.invert() but returns a list of samples."""

        # Initialize to conjugate gradient solution
        init = Inversion.invert(self, rdn_meas, geom, out, init)
        x = init.copy()
        dens = self.density(x, rdn_meas, geom)

        # Proposal is based on the posterior uncertainty
        S_hat, K, G = self.calc_posterior(x, geom, rdn_meas)
        proposal_Cov = S_hat * self.proposal_scaling
        proposal = multivariate_normal(cov=proposal_Cov)

        # Sample from the posterior using Metropolis/Hastings MCMC
        samples = []
        for i in range(self.iterations):
            xp = x + proposal.rvs()
            dens_new = self.density(xp, rdn_meas, geom)
            # should we do a state vector "out of bounds" check?
            if s.rand() <= min((dens_new / dens, 1.0)):
                x = xp
                dens = dens_new
                if self.verbose:
                    print('%8.5f %8.5f ACCEPT' %
                          (s.log(dens), s.log(dens_new)))
            else:
                if self.verbose:
                    print('%8.5f %8.5f REJECT' %
                          (s.log(dens), s.log(dens_new)))
            samples.append(x)

        return s.array(samples)
コード例 #5
0
def run_inverse():
    """Invert the remote measurement"""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_inversion.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    io = IO(config, fm, iv, [0], [0])
    geom = None

    # Get our measurement from the simulation results, and invert.
    # Calculate uncertainties at the solution state, write result
    for row, col, meas, geom, configs in io:
        states = iv.invert(meas, geom)
        io.write_spectrum(row, col, states, meas, geom)

    assert True
    return states[-1]
コード例 #6
0
def run_forward():
    """Simulate the remote measurement of a spectrally uniform surface"""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_forward.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    out = Output(config, iv)
    geom = None

    # Simulate a measurement
    state_est = fm.init_val.copy()
    rdn_est = fm.calc_rdn(state_est, geom)
    rdn_meas = rdn_est.copy()
    rdn_sim = fm.instrument.simulate_measurement(rdn_meas, geom)

    # Calculate uncertainties at the solution state, write result
    rfl_est, rdn_est, path_est, S_hat, K, G =\
        iv.forward_uncertainty(state_est, rdn_meas, geom)
    out.write_spectrum(state_est, rfl_est, rdn_est, path_est, rdn_meas,
                       rdn_sim, geom)
    assert True
    return state_est
コード例 #7
0
    def invert(self, rdn_meas, geom):
        """Inverts a meaurement. Returns an array of state vector samples.
           Similar to Inversion.invert() but returns a list of samples."""

        # We will truncate non-surface parameters to their bounds, but leave
        # Surface reflectance unconstrained so it can dip slightly below zero
        # in a channel without invalidating the whole vector
        bounds = s.array([self.fm.bounds[0].copy(), self.fm.bounds[1].copy()])
        bounds[:, self.fm.idx_surface] = s.array([[-s.inf], [s.inf]])

        # Initialize to conjugate gradient solution
        x_MAP = Inversion.invert(self, rdn_meas, geom)[-1]

        # Proposal is based on the posterior uncertainty
        S_hat, K, G = self.calc_posterior(x_MAP, geom, rdn_meas)
        proposal_Cov = S_hat * self.proposal_scaling
        proposal = multivariate_normal(cov=proposal_Cov)

        # We will use this routine for initializing
        def initialize():
            x = multivariate_normal(mean=x_MAP, cov=S_hat).rvs()
            too_low = x < bounds[0]
            x[too_low] = bounds[0][too_low]+eps
            too_high = x > bounds[1]
            x[too_high] = bounds[1][too_high]-eps
            dens = self.log_density(x, rdn_meas, geom, bounds)
            return x, dens

        # Sample from the posterior using Metropolis/Hastings MCMC
        samples, acpts, rejs, x = [], 0, 0, None
        for i in range(self.iterations):

            if i % self.restart_every == 0:
                x, dens = initialize()

            xp = x + proposal.rvs()
            dens_new = self.log_density(xp, rdn_meas,  geom, bounds=bounds)

            # Test vs. the Metropolis / Hastings criterion
            if s.isfinite(dens_new) and\
                    s.log(s.rand()) <= min((dens_new - dens, 0.0)):
                x = xp
                dens = dens_new
                acpts = acpts + 1
                if self.verbose:
                    print('%8.5e %8.5e ACCEPT! rate %4.2f' %
                          (dens, dens_new, s.mean(acpts/(acpts+rejs))))
            else:
                rejs = rejs + 1
                if self.verbose:
                    print('%8.5e %8.5e REJECT  rate %4.2f' %
                          (dens, dens_new, s.mean(acpts/(acpts+rejs))))

            # Make sure we have not wandered off the map
            if not s.isfinite(dens_new):
                x, dens = initialize()

            if i % self.restart_every < self.burnin:
                samples.append(x)

        return s.array(samples)
コード例 #8
0
ファイル: isofit.py プロジェクト: monicavermillion/isofit
def main():

    description = 'Spectroscopic Surface & Atmosphere Fitting'
    parser = argparse.ArgumentParser()
    parser.add_argument('config_file')
    parser.add_argument('--level', default='INFO')
    parser.add_argument('--row_column', default='')
    parser.add_argument('--profile', action='store_true')
    args = parser.parse_args()
    logging.basicConfig(format='%(message)s', level=args.level)

    # Load the configuration file.
    config = load_config(args.config_file)

    # Build the forward model and inversion objects.
    fm = ForwardModel(config['forward_model'])
    if 'mcmc_inversion' in config:
        iv = MCMCInversion(config['mcmc_inversion'], fm)
    else:
        iv = Inversion(config['inversion'], fm)

    # We set the row and column range of our analysis. The user can
    # specify: a single number, in which case it is interpreted as a row;
    # a comma-separated pair, in which case it is interpreted as a
    # row/column tuple (i.e. a single spectrum); or a comma-separated
    # quartet, in which case it is interpreted as a row, column range in the
    # order (line_start, line_end, sample_start, sample_end) - all values are
    # inclusive. If none of the above, we will analyze the whole cube.
    rows, cols = None, None

    if len(args.row_column) > 0:
        ranges = args.row_column.split(',')

        if len(ranges) == 1:
            rows, cols = [int(ranges[0])], None

        if len(ranges) == 2:
            row_start, row_end = ranges
            rows, cols = range(int(row_start), int(row_end)), None

        elif len(ranges) == 4:
            row_start, row_end, col_start, col_end = ranges
            line_start, line_end, samp_start, samp_end = ranges
            rows = range(int(row_start), int(row_end))
            cols = range(int(col_start), int(col_end))

    # Iterate over all spectra, reading and writing through the IO
    # object to handle formatting, buffering, and deferred write-to-file.
    # The idea is to avoid reading the entire file into memory, or hitting
    # the physical disk too often.
    io = IO(config, fm, iv, rows, cols)
    for row, col, meas, geom, configs in io:

        if meas is not None and all(meas < -49.0):

            # Bad data flags
            states = []

        else:

            # update model components with new configuration parameters
            # specific to this spectrum.  Typically these would be empty,
            # though they could contain new location-specific prior
            # distributions.
            fm.reconfigure(*configs)

            if args.profile:

                # Profile output
                gbl, lcl = globals(), locals()
                cProfile.runctx('iv.invert(meas, geom, configs)', gbl, lcl)

            else:

                # The inversion returns a list of states, which are
                # intepreted either as samples from the posterior (MCMC case)
                # or as a gradient descent trajectory (standard case). For
                # a trajectory, the last spectrum is the converged solution.
                states = iv.invert(meas, geom)

        io.write_spectrum(row, col, states, meas, geom)
コード例 #9
0
ファイル: isofit.py プロジェクト: lockhart/isofit
def main():

    description = 'Spectroscopic Surface & Atmosphere Fitting'
    parser = argparse.ArgumentParser()
    parser.add_argument('config_file')
    parser.add_argument('--row_column', default='')
    parser.add_argument('--profile', default='')
    args = parser.parse_args()

    # Setup
    config = json.load(open(args.config_file, 'r'))
    configdir, f = split(abspath(args.config_file))
    config = expand_all_paths(config, configdir)

    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    out = Output(config, iv)

    simulation_mode = (not ('input' in config)) or \
        (not ('measured_radiance_file' in config['input']))
    text_mode = simulation_mode or \
        config['input']['measured_radiance_file'].endswith('txt')

    # Do we apply a radiance correction?
    if (not simulation_mode) and \
            'radiometry_correction_file' in config['input']:
        radiance_correction_file = config['input'][
            'radiometry_correction_file']
        radiance_correction, wl = spectrumLoad(radiance_correction_file)
    else:
        radiance_correction = None

    if text_mode:

        # ------------------------------- Text mode

        # build geometry object
        if 'input' in config:
            obs, loc, glt = None, None, None
            if 'glt_file' in config['input']:
                glt = s.loadtxt(config['input']['glt_file'])
            if 'obs_file' in config['input']:
                obs = s.loadtxt(config['input']['obs_file'])
            if 'loc_file' in config['input']:
                loc = s.loadtxt(config['input']['loc_file'])
            geom = Geometry(obs=obs, glt=glt, loc=loc)
        else:
            geom = None

        if simulation_mode:

            # Get our measurement from instrument data or the initial state vector
            state_est = fm.init_val.copy()
            rdn_est = fm.calc_rdn(state_est, geom)
            rdn_meas = rdn_est.copy()
            rdn_sim = fm.instrument.simulate_measurement(rdn_meas, geom)
            rfl_est, rdn_est, path_est, S_hat, K, G =\
                iv.forward_uncertainty(state_est, rdn_meas, geom)

        else:

            # Invert instrument measurement
            rdn_meas, wl = spectrumLoad(
                config['input']['measured_radiance_file'])
            if radiance_correction is not None:
                rdn_meas = rdn_meas * radiance_correction
            rdn_sim = None

            if len(args.profile) > 0:
                cProfile.runctx('iv.invert(rdn_meas, geom, None)', globals(),
                                locals())
                sys.exit(0)

            else:
                state_est = iv.invert(rdn_meas, geom, out=out)
                rfl_est, rdn_est, path_est, S_hat, K, G =\
                    iv.forward_uncertainty(state_est, rdn_meas, geom)

        out.write_spectrum(state_est, rfl_est, rdn_est, path_est, rdn_meas,
                           rdn_sim, geom)

    else:

        # ------------------------------ Binary mode

        meas_file = config['input']['measured_radiance_file']
        meas_hdr = meas_file + '.hdr'
        meas = envi.open(meas_hdr, meas_file)
        nl, nb, ns = [
            int(meas.metadata[n]) for n in ('lines', 'bands', 'samples')
        ]

        # Do we apply a flatfield correction?
        if 'flatfield_correction_file' in config['input']:
            ffile = config['input']['flatfield_correction_file']
            fcor = envi.open(ffile + '.hdr', ffile)
            fcor_mm = fcor.open_memmap(interleave='source', writable=False)
            flatfield = s.array(fcor_mm[0, :, :])
        else:
            flatfield = None

        if 'obs_file' in config['input']:
            obs_file = config['input']['obs_file']
            obs_hdr = obs_file + '.hdr'
            obs = envi.open(obs_hdr, obs_file)
            if int(obs.metadata['bands']) != 11 and \
               int(obs.metadata['bands']) != 10:
                raise ValueError('Expected 10 or 11 bands in OBS file')
            if int(obs.metadata['lines']) != nl or \
               int(obs.metadata['samples']) != ns:
                raise ValueError('obs file dimensions do not match radiance')
        else:
            obs_file, obs_hdr = None, None

        if 'glt_file' in config['input']:
            glt_file = config['input']['glt_file']
            glt_hdr = glt_file + '.hdr'
            glt = envi.open(glt_hdr, glt_file)
            if int(glt.metadata['bands']) != 2:
                raise ValueError('Expected two bands in GLT file')
            if int(glt.metadata['lines']) != nl or \
               int(glt.metadata['samples']) != ns:
                raise ValueError('GLT file dimensions do not match radiance')
        else:
            glt_file, glt_hdr = None, None

        if 'loc_file' in config['input']:
            loc_file = config['input']['loc_file']
            loc_hdr = loc_file + '.hdr'
            loc = envi.open(loc_hdr, loc_file)
            if int(loc.metadata['bands']) != 3:
                raise ValueError('Expected three bands in LOC file')
            if int(loc.metadata['lines']) != nl or \
               int(loc.metadata['samples']) != ns:
                raise ValueError('loc file dimensions do not match radiance')
        else:
            loc_file, loc_hdr = None, None

        rfl_file = config['output']['estimated_reflectance_file']
        rfl_hdr = rfl_file + '.hdr'
        rfl_meta = meas.metadata.copy()
        if not os.path.exists(rfl_hdr):
            rfl = envi.create_image(rfl_hdr, rfl_meta, ext='', force=True)
            del rfl
        rfl = envi.open(rfl_hdr, rfl_file)

        state_file = config['output']['estimated_state_file']
        state_hdr = state_file + '.hdr'
        state_meta = meas.metadata.copy()
        state_meta['bands'] = len(fm.statevec)
        state_meta['band names'] = fm.statevec[:]
        if not os.path.exists(state_hdr):
            state = envi.create_image(state_hdr,
                                      state_meta,
                                      ext='',
                                      force=True)
            del state
        state = envi.open(state_hdr, state_file)

        mdl_file = config['output']['modeled_radiance_file']
        mdl_hdr = mdl_file + '.hdr'
        mdl_meta = meas.metadata.copy()
        if not os.path.exists(mdl_hdr):
            mdl = envi.create_image(mdl_hdr, mdl_meta, ext='', force=True)
            del mdl
        mdl = envi.open(mdl_hdr, mdl_file)

        path_file = config['output']['path_radiance_file']
        path_hdr = path_file + '.hdr'
        path_meta = meas.metadata.copy()
        if not os.path.exists(path_hdr):
            path = envi.create_image(path_hdr, path_meta, ext='', force=True)
            del path
        path = envi.open(path_hdr, path_file)

        post_file = config['output']['posterior_uncertainty_file']
        post_hdr = post_file + '.hdr'
        post_meta = state_meta.copy()
        if not os.path.exists(post_hdr):
            post = envi.create_image(post_hdr, post_meta, ext='', force=True)
            del post
        post = envi.open(post_hdr, post_file)

        if 'component_file' in config['output']:
            comp_file = config['output']['component_file']
            comp_hdr = comp_file + '.hdr'
            comp_meta = state_meta.copy()
            comp_meta['bands'] = 1
            comp_meta['band names'] = '{Surface Model Component}'
            if not os.path.exists(comp_hdr):
                comp = envi.create_image(comp_hdr,
                                         comp_meta,
                                         ext='',
                                         force=True)
                del comp
            comp = envi.open(comp_hdr, comp_file)
        else:
            comp = None

        meas_mm, obs_mm, state_mm, rfl_mm, path_mm, mdl_mm = \
            None, None, None, None, None, None

        # Did the user specify a row,column tuple, or a row?
        if len(args.row_column) < 1:
            lines, samps = range(nl), range(ns)
        else:
            # Restrict the range of the retrieval if overridden.
            ranges = args.row_column.split(',')
            if len(ranges) == 1:
                lines, samps = [int(ranges[0])], range(ns)
            if len(ranges) == 2:
                line_start, line_end = ranges
                lines, samps = range(int(line_start), int(line_end)), range(ns)
            elif len(ranges) == 4:
                line_start, line_end, samp_start, samp_end = ranges
                lines = range(int(line_start), int(line_end))
                samps = range(int(samp_start), int(samp_end))

        # analyze the image one frame at a time
        for i in lines:

            # Flush cache every once in a while
            print('line %i/%i' % (i, nl))
            if meas_mm is None or i % 100 == 0:

                # Refresh Radiance buffer
                del meas
                meas = envi.open(meas_hdr, meas_file)
                meas_mm = meas.open_memmap(interleave='source', writable=False)

                # Refresh OBS buffer
                if obs_hdr is not None:
                    del obs
                    obs = envi.open(obs_hdr, obs_file)
                    obs_mm = obs.open_memmap(interleave='source',
                                             writable=False)

                # Refresh GLT buffer
                if glt_hdr is not None:
                    del glt
                    glt = envi.open(glt_hdr, glt_file)
                    glt_mm = glt.open_memmap(interleave='source',
                                             writable=False)

                # Refresh LOC buffer
                if loc_hdr is not None:
                    del loc
                    loc = envi.open(loc_hdr, loc_file)
                    loc_mm = loc.open_memmap(interleave='source',
                                             writable=False)

                # Refresh Output buffers
                del rfl
                rfl = envi.open(rfl_hdr, rfl_file)
                rfl_mm = rfl.open_memmap(interleave='source', writable=True)

                del state
                state = envi.open(state_hdr, state_file)
                state_mm = state.open_memmap(interleave='source',
                                             writable=True)

                del path
                path = envi.open(path_hdr, path_file)
                path_mm = path.open_memmap(interleave='source', writable=True)

                del mdl
                mdl = envi.open(mdl_hdr, mdl_file)
                mdl_mm = mdl.open_memmap(interleave='source', writable=True)

                del post
                post = envi.open(post_hdr, post_file)
                post_mm = post.open_memmap(interleave='source', writable=True)

                if comp is not None:
                    del comp
                    comp = envi.open(comp_hdr, comp_file)
                    comp_mm = comp.open_memmap(interleave='source',
                                               writable=True)

            # translate to BIP
            meas_frame = s.array(meas_mm[i, :, :]).T

            if obs_hdr is not None:
                obs_frame = s.array(obs_mm[i, :, :])

            if glt_hdr is not None:
                glt_frame = s.array(glt_mm[i, :, :])

            if loc_hdr is not None:
                loc_frame = s.array(loc_mm[i, :, :])

            init = None

            nl = int(rfl_meta['lines'])
            ns = int(rfl_meta['samples'])
            nb = int(rfl_meta['bands'])
            nsv = int(state_meta['bands'])

            if comp is not None:
                comp_frame = s.zeros((1, ns))
            post_frame = s.zeros((nsv, ns), dtype=s.float32)
            rfl_frame = s.zeros((nb, ns), dtype=s.float32)
            state_frame = s.zeros((nsv, ns), dtype=s.float32)
            path_frame = s.zeros((nb, ns), dtype=s.float32)
            mdl_frame = s.zeros((nb, ns), dtype=s.float32)

            for j in samps:
                try:

                    # Use AVIRIS-C convention?
                    if loc_hdr is not None and "t01p00r" in loc_file:
                        loc_frame[:, 2] = loc_frame[:, 2] / \
                            1000.0  # translate to km

                    rdn_meas = meas_frame[j, :]

                    # Bad data test
                    if all(rdn_meas < -49.0):
                        raise OOBError()

                    if obs_hdr is not None:
                        obs_spectrum = obs_frame[j, :]
                    else:
                        obs_spectrum = None

                    if glt_hdr is not None:
                        pc = abs(glt_frame[j, 0]) - 1
                        if pc < 0:
                            raise OOBError()
                        glt_spectrum = glt_frame[j, :]
                    else:
                        pc = j
                        glt_spectrum = None

                    if loc_hdr is not None:
                        loc_spectrum = loc_frame[j, :]
                    else:
                        loc_spectrum = None

                    if flatfield is not None:
                        rdn_meas = rdn_meas * flatfield[:, pc]
                    if radiance_correction is not None:
                        rdn_meas = rdn_meas * radiance_correction
                    geom = Geometry(obs_spectrum,
                                    glt_spectrum,
                                    loc_spectrum,
                                    pushbroom_column=pc)

                    # Inversion
                    if len(args.profile) > 0:
                        cProfile.runctx('iv.invert(rdn_meas, geom, None)',
                                        globals(), locals())
                        sys.exit(0)
                    else:
                        state_est = iv.invert(rdn_meas, geom, None, init=init)
                        rfl_est, rdn_est, path_est, S_hat, K, G =\
                            iv.forward_uncertainty(state_est, rdn_meas, geom)
                        #init = state_est.copy()

                    # write spectrum
                    state_surf = state_est[iv.fm.surface_inds]
                    post_frame[:, j] = s.sqrt(s.diag(S_hat))
                    rfl_frame[:, j] = rfl_est
                    state_frame[:, j] = state_est
                    path_frame[:, j] = path_est
                    mdl_frame[:, j] = rdn_est
                    if comp is not None:
                        comp_frame[:, j] = iv.fm.surface.component(
                            state_surf, geom)

                except OOBError:
                    post_frame[:, j] = -9999 * s.ones((nsv))
                    rfl_frame[:, j] = -9999 * s.ones((nb))
                    state_frame[:, j] = -9999 * s.ones((nsv))
                    path_frame[:, j] = -9999 * s.ones((nb))
                    mdl_frame[:, j] = -9999 * s.ones((nb))
                    if comp is not None:
                        comp_frame[:, j] = -9999

            post_mm[i, :, :] = post_frame.copy()
            rfl_mm[i, :, :] = rfl_frame.copy()
            state_mm[i, :, :] = state_frame.copy()
            path_mm[i, :, :] = path_frame.copy()
            mdl_mm[i, :, :] = mdl_frame.copy()
            if comp is not None:
                comp_mm[i, :, :] = comp_frame.copy()

        del post_mm
        del rfl_mm
        del state_mm
        del path_mm
        del mdl_mm
        if comp is not None:
            del comp_mm