def quic_graph_lasso_ebic_manual(X, gamma=0): """Run QuicGraphicalLasso with mode='path' and gamma; use EBIC criteria for model selection. The EBIC criteria is built into InverseCovarianceEstimator base class so we demonstrate those utilities here. """ print("QuicGraphicalLasso (manual EBIC) with:") print(" mode: path") print(" gamma: {}".format(gamma)) model = QuicGraphicalLasso( lam=1.0, mode="path", init_method="cov", path=np.logspace(np.log10(0.01), np.log10(1.0), num=100, endpoint=True), ) model.fit(X) ebic_index = model.ebic_select(gamma=gamma) covariance_ = model.covariance_[ebic_index] precision_ = model.precision_[ebic_index] lam_ = model.lam_at_index(ebic_index) print(" len(path lams): {}".format(len(model.path_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(lam_)) print(" ebic_index: {}".format(ebic_index)) return covariance_, precision_, lam_
def show_quic_coefficient_trace_truth(X, truth): path = np.logspace(np.log10(0.01), np.log10(1.0), num=50, endpoint=True)[::-1] estimator = QuicGraphicalLasso(lam=1.0, path=path, mode="path") estimator.fit(X) trace_plot(estimator.precision_, estimator.path_, n_edges=6, ground_truth=truth)
def test_integration_quic_graphical_lasso(self, params_in, expected): """ Just tests inputs/outputs (not validity of result). """ X = datasets.load_diabetes().data ic = QuicGraphicalLasso(**params_in) ic.fit(X) result_vec = [ np.linalg.norm(ic.covariance_), np.linalg.norm(ic.precision_), np.linalg.norm(ic.opt_), np.linalg.norm(ic.duality_gap_), ] print(result_vec) assert_allclose(expected, result_vec, atol=1e-1, rtol=1e-1)
def get_conn_matrix(time_series, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas_select, uatlas_select, label_names, coords, c_boot, norm, binary): from nilearn.connectome import ConnectivityMeasure from sklearn.covariance import GraphicalLassoCV conn_matrix = None if conn_model == 'corr' or conn_model == 'cor' or conn_model == 'correlation': # credit: nilearn print('\nComputing correlation matrix...\n') conn_measure = ConnectivityMeasure(kind='correlation') conn_matrix = conn_measure.fit_transform([time_series])[0] elif conn_model == 'partcorr' or conn_model == 'parcorr' or conn_model == 'partialcorrelation': # credit: nilearn print('\nComputing partial correlation matrix...\n') conn_measure = ConnectivityMeasure(kind='partial correlation') conn_matrix = conn_measure.fit_transform([time_series])[0] elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar' or conn_model == 'sps' or conn_model == 'sparse' or conn_model == 'precision': # Fit estimator to matrix to get sparse matrix estimator_shrunk = None estimator = GraphicalLassoCV(cv=5) try: print('\nComputing covariance...\n') estimator.fit(time_series) except: print( 'Unstable Lasso estimation--Attempting to re-run by first applying shrinkage...' ) try: from sklearn.covariance import GraphicalLasso, empirical_covariance, shrunk_covariance emp_cov = empirical_covariance(time_series) for i in np.arange(0.8, 0.99, 0.01): shrunk_cov = shrunk_covariance(emp_cov, shrinkage=i) alphaRange = 10.0**np.arange(-8, 0) for alpha in alphaRange: try: estimator_shrunk = GraphicalLasso(alpha) estimator_shrunk.fit(shrunk_cov) print( "Retrying covariance matrix estimate with alpha=%s" % alpha) if estimator_shrunk is None: pass else: break except: print( "Covariance estimation failed with shrinkage at alpha=%s" % alpha) continue except ValueError: print( 'Unstable Lasso estimation! Shrinkage failed. A different connectivity model may be needed.' ) if estimator is None and estimator_shrunk is None: raise RuntimeError('\nERROR: Covariance estimation failed.') if conn_model == 'sps' or conn_model == 'sparse' or conn_model == 'precision': if estimator_shrunk is None: print( '\nFetching precision matrix from covariance estimator...\n' ) conn_matrix = -estimator.precision_ else: print( '\nFetching shrunk precision matrix from covariance estimator...\n' ) conn_matrix = -estimator_shrunk.precision_ elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar': if estimator_shrunk is None: print( '\nFetching covariance matrix from covariance estimator...\n' ) conn_matrix = estimator.covariance_ else: conn_matrix = estimator_shrunk.covariance_ elif conn_model == 'QuicGraphicalLasso': try: from inverse_covariance import QuicGraphicalLasso except ImportError: print('Cannot run QuicGraphLasso. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLasso # credit: skggm model = QuicGraphicalLasso(init_method='cov', lam=0.5, mode='default', verbose=1) print('\nCalculating QuicGraphLasso precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'QuicGraphLassoCV': try: from inverse_covariance import QuicGraphicalLassoCV except ImportError: print('Cannot run QuicGraphLassoCV. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLassoCV # credit: skggm model = QuicGraphicalLassoCV(init_method='cov', verbose=1) print( '\nCalculating QuicGraphLassoCV precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'QuicGraphicalLassoEBIC': try: from inverse_covariance import QuicGraphicalLassoEBIC except ImportError: print('Cannot run QuicGraphLassoEBIC. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLassoEBIC # credit: skggm model = QuicGraphicalLassoEBIC(init_method='cov', verbose=1) print( '\nCalculating QuicGraphLassoEBIC precision matrix using skggm...\n' ) model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'AdaptiveQuicGraphLasso': try: from inverse_covariance import AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC except ImportError: print('Cannot run AdaptiveGraphLasso. Skggm not installed!') # Compute the sparse inverse covariance via # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary' # credit: skggm model = AdaptiveQuicGraphicalLasso( estimator=QuicGraphicalLassoEBIC(init_method='cov', ), method='binary', ) print( '\nCalculating AdaptiveQuicGraphLasso precision matrix using skggm...\n' ) model.fit(time_series) conn_matrix = -model.estimator_.precision_ else: raise ValueError( '\nERROR! No connectivity model specified at runtime. Select a valid estimator using the ' '-mod flag.') if conn_matrix.shape < (2, 2): raise RuntimeError( '\nERROR! Matrix estimation selection yielded an empty or 1-dimensional graph. ' 'Check time-series for errors or try using a different atlas') coords = np.array(coords) label_names = np.array(label_names) return conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas_select, uatlas_select, label_names, coords, c_boot, norm, binary
def get_conn_matrix( time_series, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas, uatlas, labels, coords, norm, binary, hpass, extract_strategy, ): """ Computes a functional connectivity matrix based on a node-extracted time-series array. Includes a library of routines across Nilearn, scikit-learn, and skggm packages, among others. Parameters ---------- time_series : array 2D m x n array consisting of the time-series signal for each ROI node where m = number of scans and n = number of ROI's. conn_model : str Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance, partcorr for partial correlation). sps type is used by default. dir_path : str Path to directory containing subject derivative data for given run. node_size : int Spherical centroid node size in the case that coordinate-based centroids are used as ROI's. smooth : int Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's. dens_thresh : bool Indicates whether a target graph density is to be used as the basis for thresholding. network : str Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of brain subgraphs. ID : str A subject id or other unique identifier. roi : str File path to binarized/boolean region-of-interest Nifti1Image file. min_span_tree : bool Indicates whether local thresholding from the Minimum Spanning Tree should be used. disp_filt : bool Indicates whether local thresholding using a disparity filter and 'backbone network' should be used. parc : bool Indicates whether to use parcels instead of coordinates as ROI nodes. prune : bool Indicates whether to prune final graph of disconnected nodes/isolates. atlas : str Name of atlas parcellation used. uatlas : str File path to atlas parcellation Nifti1Image in MNI template space. labels : list List of string labels corresponding to ROI nodes. coords : list List of (x, y, z) tuples corresponding to a coordinate atlas used or which represent the center-of-mass of each parcellation node. norm : int Indicates method of normalizing resulting graph. binary : bool Indicates whether to binarize resulting graph edges to form an unweighted graph. hpass : bool High-pass filter values (Hz) to apply to node-extracted time-series. extract_strategy : str The name of a valid function used to reduce the time-series region extraction. Returns ------- conn_matrix : array Adjacency matrix stored as an m x n array of nodes and edges. conn_model : str Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance, partcorr for partial correlation). sps type is used by default. dir_path : str Path to directory containing subject derivative data for given run. node_size : int Spherical centroid node size in the case that coordinate-based centroids are used as ROI's for tracking. smooth : int Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's. dens_thresh : bool Indicates whether a target graph density is to be used as the basis for thresholding. network : str Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of brain subgraphs. ID : str A subject id or other unique identifier. roi : str File path to binarized/boolean region-of-interest Nifti1Image file. min_span_tree : bool Indicates whether local thresholding from the Minimum Spanning Tree should be used. disp_filt : bool Indicates whether local thresholding using a disparity filter and 'backbone network' should be used. parc : bool Indicates whether to use parcels instead of coordinates as ROI nodes. prune : bool Indicates whether to prune final graph of disconnected nodes/isolates. atlas : str Name of atlas parcellation used. uatlas : str File path to atlas parcellation Nifti1Image in MNI template space. labels : list List of string labels corresponding to graph nodes. coords : list List of (x, y, z) tuples corresponding to a coordinate atlas used or which represent the center-of-mass of each parcellation node. norm : int Indicates method of normalizing resulting graph. binary : bool Indicates whether to binarize resulting graph edges to form an unweighted graph. hpass : bool High-pass filter values (Hz) to apply to node-extracted time-series. extract_strategy : str The name of a valid function used to reduce the time-series region extraction. References ---------- .. [1] Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.04.007 .. [2] Jason Laska, Manjari Narayan, 2017. skggm 0.2.7: A scikit-learn compatible package for Gaussian and related Graphical Models. doi:10.5281/zenodo.830033 """ import sys from pynets.fmri.estimation import get_optimal_cov_estimator from nilearn.connectome import ConnectivityMeasure nilearn_kinds = [ "cov", "covariance", "covar", "corr", "cor", "correlation", "partcorr", "parcorr", "partialcorrelation", "cov", "covariance", "covar", "sps", "sparse", "precision" ] conn_matrix = None estimator = get_optimal_cov_estimator(time_series) def fallback_covariance(time_series): from sklearn.ensemble import IsolationForest from sklearn import covariance # Remove gross outliers model = IsolationForest(contamination=0.02) model.fit(time_series) outlier_mask = model.predict(time_series) outlier_mask[outlier_mask == -1] = 0 time_series = time_series[outlier_mask.astype('bool')] # Fall back to LedoitWolf print('Matrix estimation failed with Lasso and shrinkage due to ' 'ill conditions. Removing potential anomalies from the ' 'time-series using IsolationForest...') try: print("Trying Ledoit-Wolf Estimator...") conn_measure = ConnectivityMeasure( cov_estimator=covariance.LedoitWolf(store_precision=True, assume_centered=True), kind=kind) conn_matrix = conn_measure.fit_transform([time_series])[0] except (np.linalg.linalg.LinAlgError, FloatingPointError): print("Trying Oracle Approximating Shrinkage Estimator...") conn_measure = ConnectivityMeasure( cov_estimator=covariance.OAS(assume_centered=True), kind=kind) try: conn_matrix = conn_measure.fit_transform([time_series])[0] except (np.linalg.linalg.LinAlgError, FloatingPointError): raise ValueError('All covariance estimators failed to ' 'converge...') return conn_matrix if conn_model in nilearn_kinds: if conn_model == "corr" or conn_model == "cor" or conn_model == "correlation": print("\nComputing correlation matrix...\n") kind = "correlation" elif conn_model == "partcorr" or conn_model == "parcorr" or conn_model == "partialcorrelation": print("\nComputing partial correlation matrix...\n") kind = "partial correlation" elif conn_model == "sps" or conn_model == "sparse" or conn_model == "precision": print("\nComputing precision matrix...\n") kind = "precision" elif conn_model == "cov" or conn_model == "covariance" or conn_model == "covar": print("\nComputing covariance matrix...\n") kind = "covariance" else: try: raise ValueError( "\nERROR! No connectivity model specified at runtime. Select a" " valid estimator using the -mod flag.") except ValueError: sys.exit(1) # Try with the best-fitting Lasso estimator if estimator: conn_measure = ConnectivityMeasure(cov_estimator=estimator, kind=kind) try: conn_matrix = conn_measure.fit_transform([time_series])[0] except (np.linalg.linalg.LinAlgError, FloatingPointError): conn_matrix = fallback_covariance(time_series) else: conn_matrix = fallback_covariance(time_series) else: if conn_model == "QuicGraphicalLasso": try: from inverse_covariance import QuicGraphicalLasso except ImportError as e: print(e, "Cannot run QuicGraphLasso. Skggm not installed!") sys.exit(1) # Compute the sparse inverse covariance via QuicGraphLasso # credit: skggm model = QuicGraphicalLasso(init_method="cov", lam=0.5, mode="default", verbose=1) print( "\nCalculating QuicGraphLasso precision matrix using skggm...\n" ) model.fit(time_series) conn_matrix = model.precision_ elif conn_model == "QuicGraphicalLassoCV": try: from inverse_covariance import QuicGraphicalLassoCV except ImportError as e: print(e, "Cannot run QuicGraphLassoCV. Skggm not installed!") sys.exit(1) # Compute the sparse inverse covariance via QuicGraphLassoCV # credit: skggm model = QuicGraphicalLassoCV(init_method="cov", verbose=1) print("\nCalculating QuicGraphLassoCV precision matrix using" " skggm...\n") model.fit(time_series) conn_matrix = model.precision_ elif conn_model == "QuicGraphicalLassoEBIC": try: from inverse_covariance import QuicGraphicalLassoEBIC except ImportError as e: print(e, "Cannot run QuicGraphLassoEBIC. Skggm not installed!") sys.exit(1) # Compute the sparse inverse covariance via QuicGraphLassoEBIC # credit: skggm model = QuicGraphicalLassoEBIC(init_method="cov", verbose=1) print("\nCalculating QuicGraphLassoEBIC precision matrix using" " skggm...\n") model.fit(time_series) conn_matrix = model.precision_ elif conn_model == "AdaptiveQuicGraphicalLasso": try: from inverse_covariance import ( AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC, ) except ImportError as e: print(e, "Cannot run AdaptiveGraphLasso. Skggm not installed!") sys.exit(1) # Compute the sparse inverse covariance via # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary' # credit: skggm model = AdaptiveQuicGraphicalLasso( estimator=QuicGraphicalLassoEBIC(init_method="cov", ), method="binary", ) print("\nCalculating AdaptiveQuicGraphLasso precision matrix using" " skggm...\n") model.fit(time_series) conn_matrix = model.estimator_.precision_ else: try: raise ValueError( "\nNo connectivity model specified at runtime. " "Select a valid estimator using the -mod flag.") except ValueError: import sys sys.exit(1) # Enforce symmetry conn_matrix = np.nan_to_num(np.maximum(conn_matrix, conn_matrix.T)) if conn_matrix.shape < (2, 2): raise RuntimeError( "\nMatrix estimation selection yielded an empty or" " 1-dimensional graph. " "Check time-series for errors or try using a different atlas") coords = np.array(coords) labels = np.array(labels) # assert coords.shape[0] == labels.shape[0] == conn_matrix.shape[0] del time_series return ( conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas, uatlas, labels, coords, norm, binary, hpass, extract_strategy, )
def get_conn_matrix(time_series, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas, uatlas, labels, coords, norm, binary, hpass, extract_strategy): """ Computes a functional connectivity matrix based on a node-extracted time-series array. Includes a library of routines across Nilearn, scikit-learn, and skggm packages, among others. Parameters ---------- time_series : array 2D m x n array consisting of the time-series signal for each ROI node where m = number of scans and n = number of ROI's. conn_model : str Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance, partcorr for partial correlation). sps type is used by default. dir_path : str Path to directory containing subject derivative data for given run. node_size : int Spherical centroid node size in the case that coordinate-based centroids are used as ROI's. smooth : int Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's. dens_thresh : bool Indicates whether a target graph density is to be used as the basis for thresholding. network : str Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of brain subgraphs. ID : str A subject id or other unique identifier. roi : str File path to binarized/boolean region-of-interest Nifti1Image file. min_span_tree : bool Indicates whether local thresholding from the Minimum Spanning Tree should be used. disp_filt : bool Indicates whether local thresholding using a disparity filter and 'backbone network' should be used. parc : bool Indicates whether to use parcels instead of coordinates as ROI nodes. prune : bool Indicates whether to prune final graph of disconnected nodes/isolates. atlas : str Name of atlas parcellation used. uatlas : str File path to atlas parcellation Nifti1Image in MNI template space. labels : list List of string labels corresponding to ROI nodes. coords : list List of (x, y, z) tuples corresponding to a coordinate atlas used or which represent the center-of-mass of each parcellation node. norm : int Indicates method of normalizing resulting graph. binary : bool Indicates whether to binarize resulting graph edges to form an unweighted graph. hpass : bool High-pass filter values (Hz) to apply to node-extracted time-series. extract_strategy : str The name of a valid function used to reduce the time-series region extraction. Returns ------- conn_matrix : array Adjacency matrix stored as an m x n array of nodes and edges. conn_model : str Connectivity estimation model (e.g. corr for correlation, cov for covariance, sps for precision covariance, partcorr for partial correlation). sps type is used by default. dir_path : str Path to directory containing subject derivative data for given run. node_size : int Spherical centroid node size in the case that coordinate-based centroids are used as ROI's for tracking. smooth : int Smoothing width (mm fwhm) to apply to time-series when extracting signal from ROI's. dens_thresh : bool Indicates whether a target graph density is to be used as the basis for thresholding. network : str Resting-state network based on Yeo-7 and Yeo-17 naming (e.g. 'Default') used to filter nodes in the study of brain subgraphs. ID : str A subject id or other unique identifier. roi : str File path to binarized/boolean region-of-interest Nifti1Image file. min_span_tree : bool Indicates whether local thresholding from the Minimum Spanning Tree should be used. disp_filt : bool Indicates whether local thresholding using a disparity filter and 'backbone network' should be used. parc : bool Indicates whether to use parcels instead of coordinates as ROI nodes. prune : bool Indicates whether to prune final graph of disconnected nodes/isolates. atlas : str Name of atlas parcellation used. uatlas : str File path to atlas parcellation Nifti1Image in MNI template space. labels : list List of string labels corresponding to graph nodes. coords : list List of (x, y, z) tuples corresponding to a coordinate atlas used or which represent the center-of-mass of each parcellation node. norm : int Indicates method of normalizing resulting graph. binary : bool Indicates whether to binarize resulting graph edges to form an unweighted graph. hpass : bool High-pass filter values (Hz) to apply to node-extracted time-series. extract_strategy : str The name of a valid function used to reduce the time-series region extraction. References ---------- .. [1] Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. NeuroImage. https://doi.org/10.1016/j.neuroimage.2013.04.007 .. [2] Jason Laska, Manjari Narayan, 2017. skggm 0.2.7: A scikit-learn compatible package for Gaussian and related Graphical Models. doi:10.5281/zenodo.830033 """ from nilearn.connectome import ConnectivityMeasure from sklearn.covariance import GraphicalLassoCV conn_matrix = None if conn_model == 'corr' or conn_model == 'cor' or conn_model == 'correlation': # credit: nilearn print('\nComputing correlation matrix...\n') conn_measure = ConnectivityMeasure(kind='correlation') conn_matrix = conn_measure.fit_transform([time_series])[0] elif conn_model == 'partcorr' or conn_model == 'parcorr' or conn_model == 'partialcorrelation': # credit: nilearn print('\nComputing partial correlation matrix...\n') conn_measure = ConnectivityMeasure(kind='partial correlation') conn_matrix = conn_measure.fit_transform([time_series])[0] elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar' or conn_model == 'sps' or \ conn_model == 'sparse' or conn_model == 'precision': # Fit estimator to matrix to get sparse matrix estimator_shrunk = None estimator = GraphicalLassoCV(cv=5) try: print('\nComputing covariance...\n') estimator.fit(time_series) except: print('Unstable Lasso estimation--Attempting to re-run by first applying shrinkage...') try: from sklearn.covariance import GraphicalLasso, empirical_covariance, shrunk_covariance emp_cov = empirical_covariance(time_series) for i in np.arange(0.8, 0.99, 0.01): shrunk_cov = shrunk_covariance(emp_cov, shrinkage=i) alphaRange = 10.0 ** np.arange(-8, 0) for alpha in alphaRange: try: estimator_shrunk = GraphicalLasso(alpha) estimator_shrunk.fit(shrunk_cov) print(f"Retrying covariance matrix estimate with alpha={alpha}") if estimator_shrunk is None: pass else: break except: print(f"Covariance estimation failed with shrinkage at alpha={alpha}") continue except ValueError: print('Unstable Lasso estimation! Shrinkage failed. A different connectivity model may be needed.') if estimator is None and estimator_shrunk is None: raise RuntimeError('\nERROR: Covariance estimation failed.') if conn_model == 'sps' or conn_model == 'sparse' or conn_model == 'precision': if estimator_shrunk is None: print('\nFetching precision matrix from covariance estimator...\n') conn_matrix = -estimator.precision_ else: print('\nFetching shrunk precision matrix from covariance estimator...\n') conn_matrix = -estimator_shrunk.precision_ elif conn_model == 'cov' or conn_model == 'covariance' or conn_model == 'covar': if estimator_shrunk is None: print('\nFetching covariance matrix from covariance estimator...\n') conn_matrix = estimator.covariance_ else: conn_matrix = estimator_shrunk.covariance_ elif conn_model == 'QuicGraphicalLasso': try: from inverse_covariance import QuicGraphicalLasso except ImportError: print('Cannot run QuicGraphLasso. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLasso # credit: skggm model = QuicGraphicalLasso( init_method='cov', lam=0.5, mode='default', verbose=1) print('\nCalculating QuicGraphLasso precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'QuicGraphicalLassoCV': try: from inverse_covariance import QuicGraphicalLassoCV except ImportError: print('Cannot run QuicGraphLassoCV. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLassoCV # credit: skggm model = QuicGraphicalLassoCV( init_method='cov', verbose=1) print('\nCalculating QuicGraphLassoCV precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'QuicGraphicalLassoEBIC': try: from inverse_covariance import QuicGraphicalLassoEBIC except ImportError: print('Cannot run QuicGraphLassoEBIC. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLassoEBIC # credit: skggm model = QuicGraphicalLassoEBIC( init_method='cov', verbose=1) print('\nCalculating QuicGraphLassoEBIC precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'AdaptiveQuicGraphicalLasso': try: from inverse_covariance import AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC except ImportError: print('Cannot run AdaptiveGraphLasso. Skggm not installed!') # Compute the sparse inverse covariance via # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary' # credit: skggm model = AdaptiveQuicGraphicalLasso( estimator=QuicGraphicalLassoEBIC( init_method='cov', ), method='binary', ) print('\nCalculating AdaptiveQuicGraphLasso precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.estimator_.precision_ else: raise ValueError('\nERROR! No connectivity model specified at runtime. Select a valid estimator using the ' '-mod flag.') # Enforce symmetry conn_matrix = np.maximum(conn_matrix, conn_matrix.T) if conn_matrix.shape < (2, 2): raise RuntimeError('\nERROR! Matrix estimation selection yielded an empty or 1-dimensional graph. ' 'Check time-series for errors or try using a different atlas') coords = np.array(coords) labels = np.array(labels) del time_series return (conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, roi, min_span_tree, disp_filt, parc, prune, atlas, uatlas, labels, coords, norm, binary, hpass, extract_strategy)
def get_conn_matrix(time_series, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, mask, min_span_tree, disp_filt, parc, prune, atlas_select, uatlas_select, label_names, coords, vox_array): from nilearn.connectome import ConnectivityMeasure from sklearn.covariance import GraphLassoCV conn_matrix = None if conn_model == 'corr': # credit: nilearn print('\nComputing correlation matrix...\n') conn_measure = ConnectivityMeasure(kind='correlation') conn_matrix = conn_measure.fit_transform([time_series])[0] elif conn_model == 'partcorr': # credit: nilearn print('\nComputing partial correlation matrix...\n') conn_measure = ConnectivityMeasure(kind='partial correlation') conn_matrix = conn_measure.fit_transform([time_series])[0] elif conn_model == 'cov' or conn_model == 'sps': # Fit estimator to matrix to get sparse matrix estimator_shrunk = None estimator = GraphLassoCV() try: print('\nComputing covariance...\n') estimator.fit(time_series) except: print( 'Unstable Lasso estimation--Attempting to re-run by first applying shrinkage...' ) try: from sklearn.covariance import GraphLasso, empirical_covariance, shrunk_covariance emp_cov = empirical_covariance(time_series) for i in np.arange(0.8, 0.99, 0.01): shrunk_cov = shrunk_covariance(emp_cov, shrinkage=i) alphaRange = 10.0**np.arange(-8, 0) for alpha in alphaRange: try: estimator_shrunk = GraphLasso(alpha) estimator_shrunk.fit(shrunk_cov) print( "Retrying covariance matrix estimate with alpha=%s" % alpha) if estimator_shrunk is None: pass else: break except: print( "Covariance estimation failed with shrinkage at alpha=%s" % alpha) continue except ValueError: print( 'Unstable Lasso estimation! Shrinkage failed. A different connectivity model may be needed.' ) if estimator is None and estimator_shrunk is None: raise RuntimeError('ERROR: Covariance estimation failed.') if conn_model == 'sps': if estimator_shrunk is None: print( '\nFetching precision matrix from covariance estimator...\n' ) conn_matrix = -estimator.precision_ else: print( '\nFetching shrunk precision matrix from covariance estimator...\n' ) conn_matrix = -estimator_shrunk.precision_ elif conn_model == 'cov': if estimator_shrunk is None: print( '\nFetching covariance matrix from covariance estimator...\n' ) conn_matrix = estimator.covariance_ else: conn_matrix = estimator_shrunk.covariance_ elif conn_model == 'QuicGraphicalLasso': try: from inverse_covariance import QuicGraphicalLasso except ImportError: print('Cannot run QuicGraphLasso. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLasso # credit: skggm model = QuicGraphicalLasso(init_method='cov', lam=0.5, mode='default', verbose=1) print('\nCalculating QuicGraphLasso precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'QuicGraphLassoCV': try: from inverse_covariance import QuicGraphicalLassoCV except ImportError: print('Cannot run QuicGraphLassoCV. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLassoCV # credit: skggm model = QuicGraphicalLassoCV(init_method='cov', verbose=1) print( '\nCalculating QuicGraphLassoCV precision matrix using skggm...\n') model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'QuicGraphicalLassoEBIC': try: from inverse_covariance import QuicGraphicalLassoEBIC except ImportError: print('Cannot run QuicGraphLassoEBIC. Skggm not installed!') # Compute the sparse inverse covariance via QuicGraphLassoEBIC # credit: skggm model = QuicGraphicalLassoEBIC(init_method='cov', verbose=1) print( '\nCalculating QuicGraphLassoEBIC precision matrix using skggm...\n' ) model.fit(time_series) conn_matrix = -model.precision_ elif conn_model == 'AdaptiveQuicGraphLasso': try: from inverse_covariance import AdaptiveQuicGraphicalLasso, QuicGraphicalLassoEBIC except ImportError: print('Cannot run AdaptiveGraphLasso. Skggm not installed!') # Compute the sparse inverse covariance via # AdaptiveGraphLasso + QuicGraphLassoEBIC + method='binary' # credit: skggm model = AdaptiveQuicGraphicalLasso( estimator=QuicGraphicalLassoEBIC(init_method='cov', ), method='binary', ) print( '\nCalculating AdaptiveQuicGraphLasso precision matrix using skggm...\n' ) model.fit(time_series) conn_matrix = -model.estimator_.precision_ # Weight reuslting matrix by voxels in each label if using parcels as nodes # if parc is True: # norm_parcels = (vox_array - min(vox_array)) / (max(vox_array) - min(vox_array)) # conn_matrix_norm = normalize(conn_matrix) # conn_matrix = norm_parcels * conn_matrix_norm coords = np.array(coords) label_names = np.array(label_names) return conn_matrix, conn_model, dir_path, node_size, smooth, dens_thresh, network, ID, mask, min_span_tree, disp_filt, parc, prune, atlas_select, uatlas_select, label_names, coords
) timeseries = masker.fit_transform(abide.func[0]) ############################################################################### # Extract and plot sparse inverse covariance estimator_type = "QuicGraphicalLasso" if estimator_type == "QuicGraphicalLasso": # Compute the sparse inverse covariance via QuicGraphicalLasso estimator = QuicGraphicalLasso(init_method="cov", lam=0.5, mode="default", verbose=1) estimator.fit(timeseries) elif estimator_type == "QuicGraphicalLassoCV": # Compute the sparse inverse covariance via QuicGraphicalLassoCV estimator = QuicGraphicalLassoCV(init_method="cov", verbose=1) estimator.fit(timeseries) elif estimator_type == "QuicGraphicalLassoEBIC": # Compute the sparse inverse covariance via QuicGraphicalLassoEBIC estimator = QuicGraphicalLassoEBIC(init_method="cov", verbose=1) estimator.fit(timeseries) elif estimator_type == "AdaptiveQuicGraphicalLasso": # Compute the sparse inverse covariance via # AdaptiveGraphicalLasso + QuicGraphicalLassoEBIC + method='binary' model = AdaptiveGraphicalLasso(