コード例 #1
0
    def _get_model_smoothing_task(self, tasks=None):
        if tasks is None:
            tasks = {}
        if max(self.roughness_decay_smoothing_length) > 0.0:
            # We either smooth the physical model and then map the results back
            # to the internal parameterization

            # Or we smooth the relative perturbations with respect to
            if self.roughness_decay_type == "absolute":
                model_to_smooth = self.model_path
            else:
                model_to_smooth = os.path.join(
                    self.regularization_dir,
                    f"relative_perturbation_{self.iteration_name}.h5",
                )
                shutil.copy(self.model_path, model_to_smooth)
                write_xdmf(model_to_smooth)

                # relative perturbation = (latest - start) / start
                theta_prev = self.get_h5_data(self.model_path)
                theta_0 = self.get_h5_data(
                    self._get_path_for_iteration(0, self.model_path))

                theta_prev[theta_0 != 0] = (
                    theta_prev[theta_0 != 0] / theta_0[theta_0 != 0] - 1)
                self.set_h5_data(model_to_smooth, theta_prev)

            tasks["roughness_decay"] = {
                "reference_model": str(self.comm.lasif.get_master_model()),
                "model_to_smooth": str(model_to_smooth),
                "smoothing_lengths": self.roughness_decay_smoothing_length,
                "smoothing_parameters": self.parameters,
                "output_location": str(self.smoothed_model_path),
            }
        return tasks
コード例 #2
0
    def perform_smoothing(self):
        tasks = self._get_model_smoothing_task()

        if max(self.update_smoothing_length) > 0.0:
            tasks["smooth_raw_update"] = {
                "reference_model": str(self.comm.lasif.get_master_model()),
                "model_to_smooth": str(self.raw_update_path),
                "smoothing_lengths": self.update_smoothing_length,
                "smoothing_parameters": self.parameters,
                "output_location": str(self.smooth_update_path),
            }

        if len(tasks.keys()) > 0:
            reg_helper = RegularizationHelper(
                comm=self.comm,
                iteration_name=self.iteration_name,
                tasks=tasks)
            reg_helper.monitor_tasks()
        else:
            raise InversionsonError(
                "We require some sort of smoothing in Adam Optimization")

        # Write XDFMs
        if max(self.update_smoothing_length) > 0.0:
            write_xdmf(self.smooth_update_path)
        if max(self.roughness_decay_smoothing_length) > 0.0:
            write_xdmf(self.smoothed_model_path)
コード例 #3
0
    def _compute_raw_update(self):
        """Computes the raw update"""

        self.print("SGD with Momentum: Computing raw update...",
                   line_above=True)
        # Read task toml

        iteration_number = self.task_dict["iteration_number"] + 1

        indices = self.get_parameter_indices(self.raw_gradient_path)
        # scale the gradients, because they can be tiny and this leads to issues
        g_t = self.get_h5_data(self.raw_gradient_path) * self.grad_scaling_fac

        if np.sum(np.isnan(g_t)) > 1:
            raise Exception("NaNs were found in the raw gradient."
                            "Something must be wrong.")

        if iteration_number == 1:  # Initialize moments if needed
            shutil.copy(self.raw_gradient_path, self.moment_path)
            write_xdmf(self.moment_path)

            with h5py.File(self.moment_path, "r+") as h5:
                data = h5["MODEL/data"]

                # initialize with zeros
                for i in indices:
                    data[:, i, :] = np.zeros_like(data[:, i, :])

        v_t = self.beta * self.get_h5_data(
            self.moment_path) + (1 - self.beta) * g_t

        # Store first moment
        shutil.copy(
            self.moment_path,
            self._get_path_for_iteration(self.iteration_number + 1,
                                         self.moment_path),
        )
        self.set_h5_data(
            self._get_path_for_iteration(self.iteration_number + 1,
                                         self.moment_path),
            v_t,
        )

        # Correct bias
        v_t = v_t / (1 - self.beta**(self.iteration_number + 1))
        update = self.alpha * v_t

        if np.sum(np.isnan(update)) > 1:
            raise Exception("NaNs were found in the raw update."
                            "Check if the gradient is not excessively small")

        # Write raw update to file for smoothing
        shutil.copy(self.raw_gradient_path, self.raw_update_path)
        self.set_h5_data(self.raw_update_path, update)
コード例 #4
0
    def update_model(self, verbose):
        """
        This task takes the raw gradient and does all the regularisation and everything
        to update the model.
        """
        if self.comm.project.meshes == "multi-mesh":
            self.comm.lasif.move_gradient_to_cluster()

        if not self.task_dict["summing_completed"]:
            grad_summer = GradientSummer(comm=self.comm)
            grad_summer.sum_gradients(
                events=self.comm.project.non_val_events_in_iteration,
                output_location=self.raw_gradient_path,
                batch_average=True,
                sum_vpv_vph=True,
                store_norms=True,
            )
            write_xdmf(self.raw_gradient_path)
            self.task_dict["summing_completed"] = True
            self._update_task_file()
        else:
            self.print("Summing already done")

        if not self.task_dict["raw_update_completed"]:
            self._update_model(raw=True, smooth=False, verbose=verbose)
            self.task_dict["raw_update_completed"] = True
            self._update_task_file()
        else:
            self.print("Raw updating already completed")

        if not self.task_dict["smoothing_completed"]:
            self.perform_smoothing()
            self.task_dict["smoothing_completed"] = True
            self._update_task_file()
        else:
            self.print("Smoothing already done")

        if not self.task_dict["smooth_update_completed"]:
            self._update_model(raw=False, smooth=True, verbose=verbose)
            self.task_dict["smooth_update_completed"] = True
            self._update_task_file()
        else:
            self.print("Smooth updating already completed")

        if not self.task_dict["iteration_finalized"]:
            self._finalize_iteration(verbose=verbose)
            self.task_dict["iteration_finalized"] = True
            self._update_task_file()
        else:
            self.print("Iteration already finalized")

        self.finish_task()
コード例 #5
0
    def finish_task(self):
        paths = ["raw_update_path", "model", "raw_gradient_path"]

        if max(self.update_smoothing_length) > 0.0:
            paths.append("smooth_update_path")
        if max(self.roughness_decay_smoothing_length) > 0.0:
            paths.append("smoothed_model_path")

        complete_checks = [
            "smoothing_completed",
            "gradient_completed",
            "iteration_finalized",
            "forward_submitted",
            "raw_update_completed",
            "smooth_update_completed",
            "misfit_completed",
            "summing_completed",
            "validated:",
        ]
        for path in paths:
            if path in self.task_dict.keys():
                if not os.path.exists(self.task_dict[path]):
                    raise InversionsonError(
                        f"Trying to finish task but it can't find {self.task_dict[path]}"
                    )

        for complete_check in complete_checks:
            if complete_check in self.task_dict.keys():
                if not self.task_dict[complete_check]:
                    raise InversionsonError(
                        f"Trying to finish task but {complete_check} is not completed"
                    )
        self.task_dict["finished"] = True
        if self.task_dict["task"] == "update_model":
            self._update_task_file()
            target_location = self._get_path_for_iteration(
                self.iteration_number + 1, self.model_path)
            # Moving the new model into its place, moves the iteration property to the next one.
            shutil.move(
                self.tmp_model_path,
                target_location,
            )
            write_xdmf(target_location)
        else:
            self._update_task_file()
コード例 #6
0
    def set_h5_data(self, filename, data, create_xdmf=True):
        """Writes the data with shape [:, indices :]. Requires existing file."""
        if not os.path.exists(filename):
            raise Exception("only works on existing files.")

        indices = self.get_parameter_indices(filename)

        with h5py.File(filename, "r+") as h5:
            dat = h5["MODEL/data"]
            data_copy = dat[:, :, :].copy()
            # avoid writing the file many times. work on array in memory
            for i in range(len(indices)):
                data_copy[:, indices[i], :] = data[:, i, :]

            # writing only works in sorted order. This sort can only happen after
            # the above executed to preserve the ordering that data came in
            indices.sort()
            dat[:, indices, :] = data_copy[:, indices, :]

        if create_xdmf:
            write_xdmf(filename)
コード例 #7
0
    def _init_directories(self):
        """
        Build directory structure.
        """
        folders = [
            self.model_dir,
            self.average_model_dir,
            self.raw_gradient_dir,
            self.moment_dir,
            self.raw_update_dir,
            self.smooth_update_dir,
            self.task_dir,
            self.regularization_dir,
            self.smoothed_model_dir,
            self.gradient_norm_dir,
        ]

        for folder in folders:
            if not os.path.exists(folder):
                os.mkdir(folder)

        shutil.copy(self.initial_model, self.model_path)
        write_xdmf(self.model_path)
コード例 #8
0
    def _compute_raw_update(self):
        """Computes the raw update"""

        self.print("Adam: Computing raw update...", line_above=True)
        # Read task toml

        iteration_number = self.task_dict["iteration_number"] + 1

        indices = self.get_parameter_indices(self.raw_gradient_path)
        # scale the gradients, because they can be tiny and this leads to issues
        g_t = self.get_h5_data(self.raw_gradient_path) * self.grad_scaling_fac

        if np.sum(np.isnan(g_t)) > 1:
            raise Exception("NaNs were found in the raw gradient."
                            "Something must be wrong.")

        if iteration_number == 1:  # Initialize moments if needed
            shutil.copy(self.raw_gradient_path, self.first_moment_path)
            write_xdmf(self.first_moment_path)

            with h5py.File(self.first_moment_path, "r+") as h5:
                data = h5["MODEL/data"]

                # initialize with zeros
                for i in indices:
                    data[:, i, :] = np.zeros_like(data[:, i, :])

            # Also initialize second moments with zeros
            shutil.copy(self.first_moment_path, self.second_moment_path)
            write_xdmf(self.second_moment_path)

        m_t = (self.beta_1 * self.get_h5_data(self.first_moment_path) +
               (1 - self.beta_1) * g_t)

        # Store first moment
        shutil.copy(
            self.first_moment_path,
            self._get_path_for_iteration(self.iteration_number + 1,
                                         self.first_moment_path),
        )
        self.set_h5_data(
            self._get_path_for_iteration(self.iteration_number + 1,
                                         self.first_moment_path),
            m_t,
        )

        # v_t was sometimes becoming too small, so enforce double precision
        v_t = self.beta_2 * self.get_h5_data(
            self.second_moment_path) + (1 - self.beta_2) * (g_t**2)

        # Store second moment
        shutil.copy(
            self.second_moment_path,
            self._get_path_for_iteration(self.iteration_number + 1,
                                         self.second_moment_path),
        )
        self.set_h5_data(
            self._get_path_for_iteration(self.iteration_number + 1,
                                         self.second_moment_path),
            v_t,
        )

        # Correct bias
        m_t = m_t / (1 - self.beta_1**(self.iteration_number + 1))
        v_t = v_t / (1 - self.beta_2**(self.iteration_number + 1))

        # ensure e is sufficiently small, even for the small gradient values
        # that we typically have.
        e = self.epsilon * np.mean(np.sqrt(v_t))

        update = self.alpha * m_t / (np.sqrt(v_t) + e)

        max_upd = np.max(np.abs(update))
        self.print(f"Max raw model update: {max_upd}")
        if max_upd > 3.0 * self.alpha:
            raise Exception("Raw update seems a bit large")
        if np.sum(np.isnan(update)) > 1:
            raise Exception("NaNs were found in the raw update."
                            "Check if the gradient is not excessively small")

        # Write raw update to file for smoothing
        shutil.copy(self.raw_gradient_path, self.raw_update_path)
        self.set_h5_data(self.raw_update_path, update)