print "Error: the argument %s has to be specified" % (arg) exit(1) # mandatory arguments in_scp_file = arguments['in_scp_file'] out_ark_file = arguments['out_ark_file'] lstm_param_file = arguments['lstm_param_file'] lstm_cfg_file = arguments['lstm_cfg_file'] layer_index = int(arguments['layer_index']) # network structure cfg = cPickle.load(open(lstm_cfg_file, 'r')) cfg.init_activation() kaldiread = KaldiReadIn(in_scp_file) kaldiwrite = KaldiWriteOut(out_ark_file) log('> ... setting up the ATTEND LSTM layers') rng = numpy.random.RandomState(89677) theano_rng = RandomStreams(rng.randint(2**30)) lstm = ATTEND_LSTM(numpy_rng=rng, theano_rng=theano_rng, cfg=cfg) _file2nnet(layers=lstm.layers, set_layer_num=len(lstm.layers), filename=lstm_param_file) out_function = lstm.build_extract_feat_function() while True: uttid, in_matrix = kaldiread.read_next_utt() if uttid == '': break
# network structure cfg = cPickle.load(open(cnn_cfg_file,'r')) conv_configs = cfg.conv_layer_configs conv_layer_number = len(conv_configs) for i in xrange(conv_layer_number): conv_configs[i]['activation'] = cfg.conv_activation # whether to use the fast mode use_fast = cfg.use_fast if arguments.has_key('use_fast'): use_fast = string_2_bool(arguments['use_fast']) kaldiread = KaldiReadIn(in_scp_file) kaldiwrite = KaldiWriteOut(out_ark_file) log('> ... setting up the CNN convolution layers') input_shape_train = conv_configs[0]['input_shape'] input_shape_1 = (input_shape_train[1], input_shape_train[2], input_shape_train[3]) rng = numpy.random.RandomState(89677) theano_rng = RandomStreams(rng.randint(2 ** 30)) cfg.init_activation() cnn = CNN_Forward(numpy_rng = rng, theano_rng=theano_rng, conv_layer_configs = conv_configs, use_fast = use_fast) #cnn = CNNV(numpy_rng = rng, theano_rng=theano_rng, cfg=cfg) _file2nnet(cnn.conv_layers, set_layer_num = len(conv_configs), filename=cnn_param_file) out_function = cnn.build_out_function() #out_function = cnn.build_extract_feat_function(-1)
if arguments.has_key(arg) == False: print "Error: the argument %s has to be specified" % (arg); exit(1) # mandatory arguments in_scp_file = arguments['in_scp_file'] out_ark_file = arguments['out_ark_file'] lstm_param_file = arguments['lstm_param_file'] lstm_cfg_file = arguments['lstm_cfg_file'] layer_index = int(arguments['layer_index']) # network structure cfg = cPickle.load(open(lstm_cfg_file,'r')) cfg.init_activation() kaldiread = KaldiReadIn(in_scp_file) kaldiwrite = KaldiWriteOut(out_ark_file) log('> ... setting up the ATTEND LSTM layers') rng = numpy.random.RandomState(89677) theano_rng = RandomStreams(rng.randint(2 ** 30)) lstm = ATTEND_LSTM(numpy_rng=rng, theano_rng=theano_rng, cfg = cfg) _file2nnet(layers = lstm.layers, set_layer_num = len(lstm.layers), filename=lstm_param_file) out_function = lstm.build_extract_feat_function() while True: uttid, in_matrix = kaldiread.read_next_utt() if uttid == '': break print 'in_matrix:'+str(in_matrix.shape) final_matrix = numpy.zeros((in_matrix.shape[0],cfg.n_outs), dtype=theano.config.floatX)