コード例 #1
0
        # generate a holding ground for the new c
        c_new = EmbeddedFunction(new_ebdyc)
        c_new.zero()

        # get departure points
        xd_all = np.zeros(aap.N)
        yd_all = np.zeros(aap.N)

        # advect those in the annulus
        c1, c2, c3 = AEP.get_categories()
        c1n, c2n, c3n = AEP.get_category_Ns()
        # category 1 and 2
        c1_2 = np.logical_or(c1, c2)
        c1_2n = c1n + c2n
        uxh = ebdy.interpolate_to_points(ux, aap.x, aap.y)
        uyh = ebdy.interpolate_to_points(uy, aap.x, aap.y)
        vxh = ebdy.interpolate_to_points(vx, aap.x, aap.y)
        vyh = ebdy.interpolate_to_points(vy, aap.x, aap.y)
        uh = ebdy.interpolate_to_points(u, aap.x, aap.y)
        vh = ebdy.interpolate_to_points(v, aap.x, aap.y)
        SLM = np.zeros([
            c1_2n,
        ] + [2, 2], dtype=float)
        SLR = np.zeros([
            c1_2n,
        ] + [
            2,
        ], dtype=float)
        SLM[:, 0, 0] = 1 + dt * uxh[c1_2]
        SLM[:, 0, 1] = dt * uyh[c1_2]
コード例 #2
0
ファイル: coupled_simplify.py プロジェクト: dbstein/ipde
        # generate a holding ground for the new c
        c_new = EmbeddedFunction(new_ebdyc)
        c_new.zero()

        # get departure points
        xd_all = np.zeros(aap.N)
        yd_all = np.zeros(aap.N)

        # advect those in the annulus
        c1, c2, c3 = AEP.get_categories()
        c1n, c2n, c3n = AEP.get_category_Ns()
        # category 1 and 2
        c1_2 = np.logical_or(c1, c2)
        c1_2n = c1n + c2n
        uxh = ebdy.interpolate_to_points(ux, aap.x, aap.y)
        uyh = ebdy.interpolate_to_points(uy, aap.x, aap.y)
        vxh = ebdy.interpolate_to_points(vx, aap.x, aap.y)
        vyh = ebdy.interpolate_to_points(vy, aap.x, aap.y)
        uh = ebdy.interpolate_to_points(u, aap.x, aap.y)
        vh = ebdy.interpolate_to_points(v, aap.x, aap.y)
        SLM = np.zeros([
            c1_2n,
        ] + [2, 2], dtype=float)
        SLR = np.zeros([
            c1_2n,
        ] + [
            2,
        ], dtype=float)
        SLM[:, 0, 0] = 1 + dt * uxh[c1_2]
        SLM[:, 0, 1] = dt * uyh[c1_2]
コード例 #3
0
    # generate a holding ground for the new c
    c_new = EmbeddedFunction(new_ebdyc)
    c_new.zero()

    # get departure points
    xd_all = np.zeros(aap.N)
    yd_all = np.zeros(aap.N)

    # advect those in the annulus
    c1, c2, c3 = AEP.get_categories()
    c1n, c2n, c3n = AEP.get_category_Ns()
    # category 1 and 2
    c1_2 = np.logical_or(c1, c2)
    c1_2n = c1n + c2n
    uxh = ebdy.interpolate_to_points(ux, aap.x, aap.y)
    uyh = ebdy.interpolate_to_points(uy, aap.x, aap.y)
    vxh = ebdy.interpolate_to_points(vx, aap.x, aap.y)
    vyh = ebdy.interpolate_to_points(vy, aap.x, aap.y)
    uh = ebdy.interpolate_to_points(u, aap.x, aap.y)
    vh = ebdy.interpolate_to_points(v, aap.x, aap.y)
    SLM = np.zeros([
        c1_2n,
    ] + [2, 2], dtype=float)
    SLR = np.zeros([
        c1_2n,
    ] + [
        2,
    ], dtype=float)
    SLM[:, 0, 0] = 1 + dt * uxh[c1_2]
    SLM[:, 0, 1] = dt * uyh[c1_2]
コード例 #4
0
    (time.time() - st) * 1000))
st = time.time()

# now we need to interpolate onto things
AEP = ebdy.registered_partitions[ap_key]
GEP = ebdy.registered_partitions[gp_key]

# generate a holding ground for the new c
c_new = EmbeddedFunction(new_ebdyc)
c_new.zero()

# advect those in the annulus
# category 1
c1, c2, c3 = AEP.get_categories()
c1n, c2n, c3n = AEP.get_category_Ns()
uxh = ebdy.interpolate_to_points(ux, ap.x, ap.y)
uyh = ebdy.interpolate_to_points(uy, ap.x, ap.y)
vxh = ebdy.interpolate_to_points(vx, ap.x, ap.y)
vyh = ebdy.interpolate_to_points(vy, ap.x, ap.y)
uh = ebdy.interpolate_to_points(u, ap.x, ap.y)
vh = ebdy.interpolate_to_points(v, ap.x, ap.y)
SLM = np.zeros([
    c1n,
] + [2, 2], dtype=float)
SLR = np.zeros([
    c1n,
] + [
    2,
], dtype=float)
SLM[:, 0, 0] = 1 + dt * uxh[c1]
SLM[:, 0, 1] = dt * uyh[c1]
コード例 #5
0
            # now solve for sd, rd
            res = objective(s, r)
            mres = np.hypot(res[:, 0], res[:, 1]).max()
            tol = 1e-12
            while mres > tol:
                J = Jac(s, r)
                d = np.linalg.solve(J, res)
                s -= d[:, 0]
                r -= d[:, 1]
                res = objective(s, r)
                mres = np.hypot(res[:, 0], res[:, 1]).max()
            # get the departure points
            xd = bx_interp(s) + nx_interp(s) * r
            yd = by_interp(s) + ny_interp(s) * r
        # now interpolate to c
        ch3 = ebdy.interpolate_to_points(c - dt * scaled_nonlinearity(c), xd,
                                         yd)
        ch12 = ebdy.interpolate_to_points(ecnew, aap.x[c12], aap.y[c12])
        # get the full thing
        ch = np.empty(aap.N)
        ch[c12] = ch12
        ch[c3] = ch3
        # set the grid values
        c_new.grid_value[new_ebdyc.phys_not_in_annulus] = ch[:gp.N]
        # set the radial values
        c_new.radial_value_list[0][:] = ch[gp.N:].reshape(ebdy.radial_shape)
        # overwrite under grid under annulus by radial grid
        _ = new_ebdyc.interpolate_radial_to_grid(c_new.radial_value_list,
                                                 c_new.grid_value)
        # save this for a moment
        c_force = c_new.copy()