コード例 #1
0
def drop_failed_sweeps(
        dataset: EphysDataSet,
        stimulus_ontology: Optional[StimulusOntology] = None,
        qc_criteria: Optional[Dict] = None
) -> List[Dict]:
    """A convenience which extracts and QCs sweeps in preparation for dataset
    feature extraction. This function:
    1. extracts sweep qc features
    2. removes sweeps tagged with failure messages
    3. sets sweep states based on qc results

    Parameters
    ----------
    dataset : dataset from which to draw sweeps

    Returns
    -------
    sweep_features : a list of dictionaries, each describing a sweep
    """
    if stimulus_ontology is None:
        stimulus_ontology = StimulusOntology.default()
    if qc_criteria is None:
        qc_criteria = qcp.load_default_qc_criteria()

    sweep_features = sweep_qc_features(dataset)
    sweep_props.drop_tagged_sweeps(sweep_features)
    sweep_props.remove_sweep_feature("tags", sweep_features)
    sweep_states = qcp.qc_sweeps(
        stimulus_ontology, sweep_features, qc_criteria
    )
    sweep_props.assign_sweep_states(sweep_states, sweep_features)

    dataset.sweep_info = sweep_features
コード例 #2
0
ファイル: sweep_qc.py プロジェクト: ww2470/ipfx
import pandas as pd
from ipfx.dataset.create import create_ephys_data_set
from ipfx.qc_feature_extractor import sweep_qc_features

import ipfx.sweep_props as sweep_props
import ipfx.qc_feature_evaluator as qcp
from ipfx.stimulus import StimulusOntology

# Download and access the experimental data from DANDI archive per instructions in the documentation
# Example below will use an nwb file provided with the package

nwb_file = os.path.join(os.path.dirname(os.getcwd()), "data",
                        "nwb2_H17.03.008.11.03.05.nwb")
data_set = create_ephys_data_set(nwb_file=nwb_file)

# Compute sweep QC features
sweep_features = sweep_qc_features(data_set)

# Drop sweeps that failed to compute QC criteria
sweep_props.drop_tagged_sweeps(sweep_features)
sweep_props.remove_sweep_feature("tags", sweep_features)

stimulus_ontology = StimulusOntology.default()
qc_criteria = qcp.load_default_qc_criteria()

sweep_states = qcp.qc_sweeps(stimulus_ontology, sweep_features, qc_criteria)

# print a few sweeps and states
print(pd.DataFrame(sweep_features).head())
print(sweep_states[0:len(pd.DataFrame(sweep_features).head())])