コード例 #1
0
    sess.run(sparse_data_update_op, feed_dict=fc.feed_dict())
    sparse_result, sparse_input_grad, sparse_weight_grad, dense_grad_w = sess.run(
        sparse_fetches,
        feed_dict={
            lhs: lhs_values,
            compute_dense_grad_w: True
        })

# Check all the results:

# Convert the sparse gradient metainfo back to triplets and then use those row and col indices
# to index the dense reference weight gradient:
sparse_data = sparse.SparseRepresentation(fc.data.metainfo_state,
                                          sparse_weight_grad[0])
triplets = sparse.triplets_from_representation(fc.spec, sparse_data)
reference_grad_nzvalues = sparse.values_at_indices(triplets[0], triplets[1],
                                                   reference_weight_grad[0])

# Convert the dense reference weight gradient to a sparse one using the same mask
# that we used for the weights so we can compare the nzvalues against the sparse grad:
_, _, values = sparse.triplets_from_dense(reference_weight_grad[0])
sparse_data = sparse.representation_from_triplets(fc.spec, *triplets)
reference_grad_nzvalues = sparse_data.nz_values

# Need to set tolerances for fp32 as numpy is set for doubles by default:
rtol = 1e-05
atol = 1e-06

if not np.allclose(
        reference_result, sparse_result, rtol=rtol, atol=atol, equal_nan=True):
    print(f"Reference result:\n{reference_result}")
    print(f"Sparse result:\n{sparse_result}")
コード例 #2
0
            f"Max abs error: {np.max(np.abs(projections-reference_projections))}"
        )
        raise RuntimeError("Sparse and reference projections do not match.")

    # Convert the sparse gradient metainfo back to triplets and then use those row and col indices
    # to index the dense reference weight gradient:
    matmul_spec = embedding.projection.weights.spec
    matmul_opts = embedding.projection.weights.matmul_options
    sparse_data = sparse.SparseRepresentation(
        embedding.projection.weights.get_metainfo(), tied_grad_w[0])
    triplets = sparse.triplets_from_representation(matmul_spec, sparse_data,
                                                   matmul_opts)
    # Reference grad is transposed with respect to popsparse one (third Jacobian is the reduction gradient wrt. weights):
    ref_grad_reduced = np.transpose(reference_grads_w)
    if args.block_size == 1:
        reference_grad_nzvalues = sparse.values_at_indices(
            triplets[0], triplets[1], ref_grad_reduced)
    else:
        reference_grad_nzvalues = sparse.blocks_at_indices(
            triplets[0], triplets[1], args.block_size, ref_grad_reduced)
    # Convert the dense reference weight gradient to a sparse one using the same mask
    # that we used for the weights so we can compare the nzvalues against the sparse grad:
    dense_data = sparse.representation_from_triplets(matmul_spec, triplets[0],
                                                     triplets[1],
                                                     reference_grad_nzvalues,
                                                     matmul_opts)

    if logger.level == logging.getLevelName("DEBUG"):
        print(f"Tied grad-w triplets:\n{triplets}")
        print(
            f"Tied grad-w dense:\n{np.transpose(sparse.dense_from_triplets(matmul_spec, *triplets))}"
        )