コード例 #1
0
def show_ipygany(plotter, return_viewer, height=None, width=None):
    """Show an ipygany scene."""
    # convert each mesh in the plotter to an ipygany scene
    actors = plotter.renderer._actors
    meshes = []
    for actor in actors.values():
        ipygany_obj = ipygany_block_from_actor(actor)
        if ipygany_obj is not None:
            meshes.append(ipygany_obj)

    bc_color = color_float_to_hex(*plotter.background_color)
    scene = Scene(meshes,
                  background_color=bc_color,
                  camera=ipygany_camera_from_plotter(plotter))

    # optionally size of the plotter
    if height is not None:
        scene.layout.height = f'{height}'
    if width is not None:
        scene.layout.width = f'{width}'

    cbar = None
    if len(plotter.scalar_bars):
        for mesh in meshes:
            if isinstance(mesh, ipygany.IsoColor):
                cbar = ipygany.ColorBar(mesh)
                colored_mesh = mesh
                break

    # Simply return the scene
    if return_viewer:
        return scene

    if cbar is not None:
        # Colormap choice widget
        colormap_dd = Dropdown(options=colormaps, description='Colormap:')
        jslink((colored_mesh, 'colormap'), (colormap_dd, 'index'))

        # sensible colorbar maximum width, or else it looks bad when
        # window is large.
        cbar.layout.max_width = '500px'
        cbar.layout.min_height = '50px'  # stop from getting squished
        # cbar.layout.height = '20%'  # stop from getting squished
        # cbar.layout.max_height = ''

        # Create a slider that will dynamically change the boundaries of the colormap
        # colormap_slider_range = FloatRangeSlider(value=[height_min, height_max],
        #                                          min=height_min, max=height_max,
        #                                          step=(height_max - height_min) / 100.)

        # jslink((colored_mesh, 'range'), (colormap_slider_range, 'value'))

        # create app
        title = HTML(value=f'<h3>{list(plotter.scalar_bars.keys())[0]}</h3>')
        legend = VBox((title, colormap_dd, cbar))
        scene = AppLayout(center=scene,
                          footer=legend,
                          pane_heights=[0, 0, '150px'])

    display.display_html(scene)
コード例 #2
0
    def create_layout(self):
        # timer.display_timer(5)

        layout = AppLayout(
            # header=header_button,
            header=self.timer_button,
            left_sidebar=None,
            center=self.center_button,
            right_sidebar=None,
            footer=self.footer_button)
        self.layout = layout
        return layout
コード例 #3
0
def area():
    """
    Provide map and options to choose area of interest
    """

    center = [65.73, -50.71]
    zoom = 4
    m = Map(center=center, zoom=zoom)

    global dc, start, end, file, lon_l, lat_l, lon_r, lat_r

    # Pick date
    start = widgets.DatePicker(disabled=False)
    end = widgets.DatePicker(disabled=False)

    # Select from map
    dc = DrawControl(rectangle={'shapeOptions': {
        'color': '#0000FF'
    }},
                     polyline={},
                     polygon={},
                     circlemarker={})
    m.add_control(dc)

    # Shapefile
    file = widgets.FileUpload(accept='.shp', multiple=False)

    # Bounding box
    lon_l = widgets.FloatText(description="lon")
    lat_l = widgets.FloatText(description="lat")
    lon_r = widgets.FloatText(description="lon")
    lat_r = widgets.FloatText(description="lat")

    return (AppLayout(header=VBox([
        HTML("<h1>Select area (time and space)</h1>"),
        HBox([Label("Start Date:"), start,
              Label("End Date:"), end])
    ]),
                      center=m,
                      right_sidebar=VBox([
                          HTML("<h3>or upload shapefile<h3>"), file,
                          HTML("<h3> <h3>"),
                          HTML("<h3>or bounding box<h3>"),
                          Label("Bottom-left corner"), lon_l, lat_l,
                          Label("Upper-right corner"), lon_r, lat_r
                      ])))
コード例 #4
0
    def hoodflex_widget(self):
        one_year = list(
            [self.start + dt.timedelta(days=i) for i in range(364)])
        tick_options = [(one_year[i].strftime('%m/%d/%Y'), i / 12)
                        for i in range(len(one_year)) if i % 6 == 0]

        date_slider = SelectionRangeSlider(options=tick_options,
                                           index=(30, 60),
                                           description='Date:',
                                           disabled=False)

        date_slider.layout.margin = '0px 30% 0px 30%'
        date_slider.layout.width = '40%'

        self.plot_setup()
        self.full_plot()
        date_slider.observe(self.update_plot, names='value')
        date_slider.observe(self.update_plot, names='label')

        app_layout = AppLayout(center=self.fig.canvas,
                               footer=date_slider,
                               pane_heights=[0, 6, 1])

        return app_layout
コード例 #5
0
colored_mesh = IsoColor(mesh,
                        input=('S', 'YY'),
                        min=sigmayy_min,
                        max=sigmayy_max)

# Create a slider that will dynamically change the boundaries of the colormap
colormap_slider_range = FloatRangeSlider(value=[sigmayy_min, sigmayy_max],
                                         min=sigmayy_min,
                                         max=sigmayy_max,
                                         step=(sigmayy_max - sigmayy_min) /
                                         100.)

jslink((colored_mesh, 'range'), (colormap_slider_range, 'value'))

# Create a colorbar widget
colorbar = ColorBar(colored_mesh)

# Colormap choice widget
colormap = Dropdown(options=colormaps, description='colormap:')

jslink((colored_mesh, 'colormap'), (colormap, 'index'))

AppLayout(
    header=Scene([colored_mesh]),
    left_sidebar=VBox((colormap, colormap_slider_range)),
    right_sidebar=(colorbar),
    pane_widths=[1, 0, 1],
    pane_heights=['80%', '20%', 0],
    footer=None,
)
コード例 #6
0
ファイル: nglview.py プロジェクト: volkamerlab/teachopencadd
def docking(
    protein_filepath,
    list_docking_poses_filepaths,
    list_docking_poses_labels,
    list_docking_poses_affinities,
):
    """
    Visualize a list of docking poses in the protein structure, using NGLView.

    Parameters
    ----------
    protein_filepath : str or pathlib.Path
        Filepath of the extracted protein structure used in docking experiment.
    list_docking_poses_filepaths : list of str or pathlib.Path
        List of filepaths for the separated docking poses.
    list_docking_poses_labels : list of str
        List of labels for docking poses to be used for the selection menu.
    list_docking_poses_affinities : list of str or float
        List of binding affinities in kcal/mol, to be viewed for each docking pose.

    Returns
    -------
    nglview.widget.NGLWidget
        Interactive viewer containing the protein structure and all docking poses,
        with a menu to select between docking poses.
    """

    # JavaScript code needed to update residues around the ligand
    # because this part is not exposed in the Python widget
    # Based on: http://nglviewer.org/ngl/api/manual/snippets.html
    _RESIDUES_AROUND = """
    var protein = this.stage.compList[0];
    var ligand_center = this.stage.compList[{index}].structure.atomCenter();
    var around = protein.structure.getAtomSetWithinPoint(ligand_center, {radius});
    var around_complete = protein.structure.getAtomSetWithinGroup(around);
    var last_repr = protein.reprList[protein.reprList.length-1];
    protein.removeRepresentation(last_repr);
    protein.addRepresentation("licorice", {{sele: around_complete.toSeleString()}});
    """
    print("Docking modes")
    print("(CID - mode)")

    # Create viewer widget
    viewer = nv.NGLWidget(height="860px")

    protein_filepath = Path(protein_filepath)
    with open(protein_filepath) as f:
        viewer.add_component(f, ext=protein_filepath.suffix.strip("."))
    # Select first atom in molecule (@0) so it holds the affinity label
    label_kwargs = dict(
        labelType="text",
        sele="@0",
        showBackground=True,
        backgroundColor="black",
    )
    list_docking_poses_affinities = list(
        map(lambda x: f"{x} kcal/mol", list_docking_poses_affinities))
    for docking_pose_filepath, ligand_label in zip(
            list_docking_poses_filepaths, list_docking_poses_affinities):
        docking_pose_filepath = Path(docking_pose_filepath)
        with open(docking_pose_filepath) as f:
            ngl_ligand = viewer.add_component(
                f, ext=docking_pose_filepath.suffix.strip("."))
        ngl_ligand.add_label(labelText=[str(ligand_label)], **label_kwargs)

    # Create selection widget
    # Options is a list of (text, value) tuples. When we click on select, the value will be passed
    # to the callable registered in `.observe(...)`
    selector = Select(
        options=[(label, i)
                 for (i, label) in enumerate(list_docking_poses_labels, 1)],
        description="",
        # the chosen height for the viewer corresponds to a menu with 52 items.
        # if there are less than 52 items in the menu, fit the menu height to the items,
        # if there are more than 52 items, create a scroll menu with a height of 52 items.
        rows=len(list_docking_poses_filepaths)
        if len(list_docking_poses_filepaths) <= 52 else 52,
        layout=Layout(flex="flex-grow", width="auto"),
    )

    # Arrange GUI elements
    # The selection box will be on the left, the viewer will occupy the rest of the window
    display(
        AppLayout(left_sidebar=selector, center=viewer, pane_widths=[1, 6, 1]))

    # This is the event handler - action taken when the user clicks on the selection box
    # We need to define it here so it can "see" the viewer variable
    def _on_selection_change(change):
        # Update only if the user clicked on a different entry
        if change["name"] == "value" and (change["new"] != change["old"]):
            viewer.hide(list(range(1,
                                   len(list_docking_poses_filepaths) +
                                   1)))  # Hide all ligands (components 1-n)
            component = getattr(viewer, f"component_{change['new']}")
            component.show()  # Display the selected one
            component.center(500)  # Zoom view
            # Call the JS code to show sidechains around ligand
            viewer._execute_js_code(
                _RESIDUES_AROUND.format(index=change["new"], radius=6))

    # Register event handler
    selector.observe(_on_selection_change)
    # Trigger event manually to focus on the first solution
    _on_selection_change({"name": "value", "new": 1, "old": None})
    return viewer
コード例 #7
0
ファイル: nglview.py プロジェクト: volkamerlab/teachopencadd
def interactions(
    protein_filepath,
    list_docking_poses_filepaths,
    list_docking_poses_labels,
    list_docking_poses_affinities,
    list_docking_poses_plip_dicts,
):
    """
    Visualize protein-ligand interactions.

    Parameters
    ----------
    protein_filepath : str or pathlib.Path
        Filepath of the extracted protein structure used in docking experiment.
    list_docking_poses_filepaths : list of str or pathlib.Path
        List of filepaths for the separated docking poses.
    list_docking_poses_labels : list of str
        List of labels for docking poses to be used for the selection menu.
    list_docking_poses_affinities : list of str or float
        List of binding affinities in kcal/mol, to be viewed for each docking pose.
    list_docking_poses_plip_dicts : list of dicts
        List of interaction data (as a dict) for each ligand, generated by plip.

    Returns
    -------
    nglview.widget.NGLWidget
        Interactive viewer containing the protein structure, all docking poses, and the
        interactions between them, with a menu to select between docking poses.
    """

    color_map = {
        "hydrophobic": [0.90, 0.10, 0.29],
        "hbond": [0.26, 0.83, 0.96],
        "waterbridge": [1.00, 0.88, 0.10],
        "saltbridge": [0.67, 1.00, 0.76],
        "pistacking": [0.75, 0.94, 0.27],
        "pication": [0.27, 0.60, 0.56],
        "halogen": [0.94, 0.20, 0.90],
        "metal": [0.90, 0.75, 1.00],
    }

    # Create selection widget
    # Options is a list of (text, value) tuples.
    # When we click on select, the value will be passed
    # to the callable registered in `.observe(...)`
    selector = Select(
        options=[(label, i)
                 for (i, label) in enumerate(list_docking_poses_labels, 1)],
        description="",
        # the chosen height for the viewer corresponds to a menu with 52 items.
        # if there are less than 52 items in the menu, fit the menu height to the items,
        # if there are more than 52 items, create a scroll menu with a height of 52 items.
        rows=len(list_docking_poses_filepaths)
        if len(list_docking_poses_filepaths) <= 52 else 52,
        layout=Layout(flex="flex-grow", width="auto"),
    )

    # Arrange GUI elements
    # The selection box will be on the left,
    # the viewer will occupy the rest of the window (but it will be added later)
    app = AppLayout(
        left_sidebar=selector,
        center=None,
        pane_widths=[1, 6, 1],
        height="860px",
    )

    # Show color-map
    fig, axs = plt.subplots(nrows=2, ncols=4, figsize=(12, 1))
    plt.subplots_adjust(hspace=1)
    fig.suptitle("Color-map of interactions", size=10, y=1.3)
    for ax, (interaction, color) in zip(fig.axes, color_map.items()):
        ax.imshow(np.zeros((1, 5)),
                  cmap=colors.ListedColormap(color_map[interaction]))
        ax.set_title(interaction, loc="center", fontsize=10)
        ax.set_axis_off()
    plt.show()

    list_docking_poses_affinities = list(
        map(lambda x: f"{x} kcal/mol", list_docking_poses_affinities))

    protein_filepath = Path(protein_filepath)

    # This is the event handler - action taken when the user clicks on the selection box
    # We need to define it here so it can "see" the viewer variable
    def _on_selection_change(change):
        # Update only if the user clicked on a different entry
        if change["name"] == "value" and (change["new"] != change["old"]):
            if app.center is not None:
                app.center.close()

            # NGL Viewer
            app.center = viewer = nv.NGLWidget(height="860px",
                                               default=True,
                                               gui=True)

            with open(protein_filepath) as f:
                prot_component = viewer.add_component(
                    f,
                    ext=protein_filepath.suffix.strip("."),
                    default_representation=False)  # add protein
            prot_component.add_representation("cartoon")
            time.sleep(1)

            label_kwargs = dict(
                labelType="text",
                sele="@0",
                showBackground=True,
                backgroundColor="black",
            )

            list_docking_poses_filepaths[change["new"]] = Path(
                list_docking_poses_filepaths[change["new"]])
            with open(list_docking_poses_filepaths[change["new"]]) as f:
                lig_component = viewer.add_component(
                    f,
                    ext=list_docking_poses_filepaths[change["new"]].suffix.
                    strip("."))  # add selected ligand
            lig_component.add_label(
                labelText=[str(list_docking_poses_affinities[change["new"]])],
                **label_kwargs)
            time.sleep(1)
            lig_component.center(duration=500)

            # Add interactions
            interactions = list_docking_poses_plip_dicts[change["new"]]

            interacting_residues = []

            for interaction_type, interaction_list in interactions.items():
                color = color_map[interaction_type]

                # for each interaction_type the interaction_list starts with a tuple
                # containing the keywords for that interaction. If the list has only this
                # one element, it means there is no interaction of this type available,
                # so we skip the rest of the loop and go to the next interaction.
                if len(interaction_list) == 1:
                    continue
                df_interactions = pd.DataFrame.from_records(
                    interaction_list[1:], columns=interaction_list[0])
                for _, interaction in df_interactions.iterrows():
                    name = interaction_type
                    viewer.shape.add_cylinder(
                        interaction["LIGCOO"],
                        interaction["PROTCOO"],
                        color,
                        [0.1],
                        name,
                    )
                    interacting_residues.append(interaction["RESNR"])
            # Display interacting residues
            res_sele = " or ".join(
                [f"({r} and not _H)" for r in interacting_residues])
            res_sele_nc = " or ".join([
                f"({r} and ((_O) or (_N) or (_S)))"
                for r in interacting_residues
            ])

            prot_component.add_ball_and_stick(sele=res_sele,
                                              colorScheme="chainindex",
                                              aspectRatio=1.5)
            prot_component.add_ball_and_stick(sele=res_sele_nc,
                                              colorScheme="element",
                                              aspectRatio=1.5)

    # Register event handler
    selector.observe(_on_selection_change)
    # Trigger event manually to focus on the first solution
    _on_selection_change({"name": "value", "new": 0, "old": None})
    return app
コード例 #8
0
ファイル: backends.py プロジェクト: marcomusy/vedo
def getNotebookBackend(actors2show, zoom, viewup):

    vp = settings.plotter_instance

    if zoom == 'tight':
        zoom=1 # disable it

    if isinstance(vp.shape, str) or sum(vp.shape) > 2:
        colors.printc("Multirendering is not supported in jupyter.", c=1)
        return

    ####################################################################################
    # https://github.com/InsightSoftwareConsortium/itkwidgets
    #  /blob/master/itkwidgets/widget_viewer.py
    if 'itk' in settings.notebookBackend:
        from itkwidgets import view

        settings.notebook_plotter = view(actors=actors2show,
                                         cmap='jet', ui_collapsed=True,
                                         gradient_opacity=False)


    ####################################################################################
    elif settings.notebookBackend == 'k3d':
        try:
            import k3d # https://github.com/K3D-tools/K3D-jupyter
        except:
            print("Cannot find k3d, install with:  pip install k3d")
            return

        actors2show2 = []
        for ia in actors2show:
            if not ia:
                continue
            if isinstance(ia, vtk.vtkAssembly): #unpack assemblies
                acass = ia.unpack()
                actors2show2 += acass
            else:
                actors2show2.append(ia)

        # vbb, sizes, _, _ = addons.computeVisibleBounds()
        # kgrid = vbb[0], vbb[2], vbb[4], vbb[1], vbb[3], vbb[5]

        settings.notebook_plotter = k3d.plot(axes=[vp.xtitle, vp.ytitle, vp.ztitle],
                                             menu_visibility=settings.k3dMenuVisibility,
                                             height=settings.k3dPlotHeight,
                                             antialias=settings.k3dAntialias,
                                             )
        # settings.notebook_plotter.grid = kgrid
        settings.notebook_plotter.lighting = settings.k3dLighting

        # set k3d camera
        settings.notebook_plotter.camera_auto_fit = settings.k3dCameraAutoFit
        settings.notebook_plotter.grid_auto_fit = settings.k3dGridAutoFit

        settings.notebook_plotter.axes_helper = settings.k3dAxesHelper

        if settings.plotter_instance and settings.plotter_instance.camera:
            k3dc =  utils.vtkCameraToK3D(settings.plotter_instance.camera)
            if zoom:
                k3dc[0] /= zoom
                k3dc[1] /= zoom
                k3dc[2] /= zoom
            settings.notebook_plotter.camera = k3dc
        # else:
        #     vsx, vsy, vsz = vbb[0]-vbb[1], vbb[2]-vbb[3], vbb[4]-vbb[5]
        #     vss = numpy.linalg.norm([vsx, vsy, vsz])
        #     if zoom:
        #         vss /= zoom
        #     vfp = (vbb[0]+vbb[1])/2, (vbb[2]+vbb[3])/2, (vbb[4]+vbb[5])/2 # camera target
        #     if viewup == 'z':
        #         vup = (0,0,1) # camera up vector
        #         vpos= vfp[0] + vss/1.9, vfp[1] + vss/1.9, vfp[2]+vss*0.01  # camera position
        #     elif viewup == 'x':
        #         vup = (1,0,0)
        #         vpos= vfp[0]+vss*0.01, vfp[1] + vss/1.5, vfp[2]  # camera position
        #     else:
        #         vup = (0,1,0)
        #         vpos= vfp[0]+vss*0.01, vfp[1]+vss*0.01, vfp[2] + vss/1.5  # camera position
        #     settings.notebook_plotter.camera = [vpos[0], vpos[1], vpos[2],
        #                                           vfp[0],  vfp[1],  vfp[2],
        #                                           vup[0],  vup[1],  vup[2] ]
        if not vp.axes:
            settings.notebook_plotter.grid_visible = False

        for ia in actors2show2:

            if isinstance(ia, (vtk.vtkCornerAnnotation, vtk.vtkAssembly)):
                continue

            kobj = None
            kcmap= None
            name = None
            if hasattr(ia, 'filename'):
                if ia.filename:
                    name = os.path.basename(ia.filename)
                if ia.name:
                    name = os.path.basename(ia.name)

            #####################################################################scalars
            # work out scalars first, Points Lines are also Mesh objs
            if isinstance(ia, (Mesh, shapes.Line, Points)):
#                print('scalars', ia.name, ia.N())
                iap = ia.GetProperty()

                if isinstance(ia, (shapes.Line, Points)):
                    iapoly = ia.polydata()
                else:
                    iapoly = ia.clone().clean().triangulate().computeNormals().polydata()

                vtkscals = None
                color_attribute = None
                if ia.mapper().GetScalarVisibility():
                    vtkdata = iapoly.GetPointData()
                    vtkscals = vtkdata.GetScalars()

                    if vtkscals is None:
                        vtkdata = iapoly.GetCellData()
                        vtkscals = vtkdata.GetScalars()
                        if vtkscals is not None:
                            c2p = vtk.vtkCellDataToPointData()
                            c2p.SetInputData(iapoly)
                            c2p.Update()
                            iapoly = c2p.GetOutput()
                            vtkdata = iapoly.GetPointData()
                            vtkscals = vtkdata.GetScalars()

                    if vtkscals is not None:
                        if not vtkscals.GetName():
                            vtkscals.SetName('scalars')
                        scals_min, scals_max = ia.mapper().GetScalarRange()
                        color_attribute = (vtkscals.GetName(), scals_min, scals_max)
                        lut = ia.mapper().GetLookupTable()
                        lut.Build()
                        kcmap=[]
                        nlut = lut.GetNumberOfTableValues()
                        for i in range(nlut):
                            r,g,b,a = lut.GetTableValue(i)
                            kcmap += [i/(nlut-1), r,g,b]


            #####################################################################Volume
            if isinstance(ia, Volume):
#                print('Volume', ia.name, ia.dimensions())
                kx, ky, kz = ia.dimensions()
                arr = ia.pointdata[0]
                kimage = arr.reshape(-1, ky, kx)

                colorTransferFunction = ia.GetProperty().GetRGBTransferFunction()
                kcmap=[]
                for i in range(128):
                    r,g,b = colorTransferFunction.GetColor(i/127)
                    kcmap += [i/127, r,g,b]

                kbounds = numpy.array(ia.imagedata().GetBounds()) \
                    + numpy.repeat(numpy.array(ia.imagedata().GetSpacing()) / 2.0, 2)\
                    * numpy.array([-1,1] * 3)

                kobj = k3d.volume(kimage.astype(numpy.float32),
                                  color_map=kcmap,
                                  #color_range=ia.imagedata().GetScalarRange(),
                                  alpha_coef=10,
                                  bounds=kbounds,
                                  name=name,
                                  )
                settings.notebook_plotter += kobj

            #####################################################################text
            elif hasattr(ia, 'info') and 'formula' in ia.info.keys():
                pos = (ia.GetPosition()[0],ia.GetPosition()[1])
                kobj = k3d.text2d(ia.info['formula'], position=pos)
                settings.notebook_plotter += kobj


            #####################################################################Mesh
            elif isinstance(ia, Mesh) and ia.N() and len(ia.faces()):
                # print('Mesh', ia.name, ia.N(), len(ia.faces()))
                kobj = k3d.vtk_poly_data(iapoly,
                                         name=name,
                                         # color=_rgb2int(iap.GetColor()),
                                         color_attribute=color_attribute,
                                         color_map=kcmap,
                                         opacity=iap.GetOpacity(),
                                         wireframe=(iap.GetRepresentation()==1))

                if iap.GetInterpolation() == 0:
                    kobj.flat_shading = True
                settings.notebook_plotter += kobj

            #####################################################################Points
            elif isinstance(ia, Points):
                # print('Points', ia.name, ia.N())
                kcols=[]
                if color_attribute is not None:
                    scals = utils.vtk2numpy(vtkscals)
                    kcols = k3d.helpers.map_colors(scals, kcmap,
                                                   [scals_min,scals_max]).astype(numpy.uint32)
                # sqsize = numpy.sqrt(numpy.dot(sizes, sizes))

                kobj = k3d.points(ia.points().astype(numpy.float32),
                                  color=_rgb2int(iap.GetColor()),
                                  colors=kcols,
                                  opacity=iap.GetOpacity(),
                                  shader=settings.k3dPointShader,
                                  point_size=iap.GetPointSize(),
                                  name=name,
                                  )
                settings.notebook_plotter += kobj


            #####################################################################Lines
            elif ia.polydata(False).GetNumberOfLines():
                # print('Line', ia.name, ia.N(), len(ia.faces()),
                #       ia.polydata(False).GetNumberOfLines(), len(ia.lines()),
                #       color_attribute, [vtkscals])

                # kcols=[]
                # if color_attribute is not None:
                #     scals = utils.vtk2numpy(vtkscals)
                #     kcols = k3d.helpers.map_colors(scals, kcmap,
                #                                    [scals_min,scals_max]).astype(numpy.uint32)

                # sqsize = numpy.sqrt(numpy.dot(sizes, sizes))

                for i, ln_idx in enumerate(ia.lines()):
                    if i>200:
                        print('WARNING: K3D nr of line segments is limited to 200.')
                        break
                    pts = ia.points()[ln_idx]
                    kobj = k3d.line(pts.astype(numpy.float32),
                                    color=_rgb2int(iap.GetColor()),
                                    opacity=iap.GetOpacity(),
                                    shader=settings.k3dLineShader,
                                    # width=iap.GetLineWidth()*sqsize/1000,
                                    name=name,
                                    )

                    settings.notebook_plotter += kobj


    ####################################################################################
    elif settings.notebookBackend == 'panel' and hasattr(vp, 'window') and vp.window:

        import panel # https://panel.pyviz.org/reference/panes/VTK.html
        vp.renderer.ResetCamera()
        settings.notebook_plotter = panel.pane.VTK(vp.window,
                                                   width=int(vp.size[0]/1.5),
                                                   height=int(vp.size[1]/2))


    ####################################################################################
    elif 'ipyvtk' in settings.notebookBackend and hasattr(vp, 'window') and vp.window:

        from ipyvtklink.viewer import ViewInteractiveWidget
        vp.renderer.ResetCamera()
        settings.notebook_plotter = ViewInteractiveWidget(vp.window)

    ####################################################################################
    elif 'ipygany' in settings.notebookBackend:

        from ipygany import PolyMesh, Scene, IsoColor, RGB, Component
        from ipygany import Alpha, ColorBar, colormaps, PointCloud
        from ipywidgets import FloatRangeSlider, Dropdown, VBox, AppLayout, jslink

        bgcol = colors.rgb2hex(colors.getColor(vp.backgrcol))

        actors2show2 = []
        for ia in actors2show:
            if not ia:
                continue
            if isinstance(ia, vedo.Assembly): #unpack assemblies
                assacts = ia.unpack()
                for ja in assacts:
                    if isinstance(ja, vedo.Assembly):
                        actors2show2 += ja.unpack()
                    else:
                        actors2show2.append(ja)
            else:
                actors2show2.append(ia)

        pmeshes = []
        colorbar = None
        for obj in actors2show2:
#            print("ipygany processing:", [obj], obj.name)

            if isinstance(obj, vedo.shapes.Line):
                lg = obj.diagonalSize()/1000 * obj.GetProperty().GetLineWidth()
                vmesh = vedo.shapes.Tube(obj.points(), r=lg, res=4).triangulate()
                vmesh.c(obj.c())
                faces = vmesh.faces()
                # todo: Lines
            elif isinstance(obj, Mesh):
                vmesh = obj.triangulate()
                faces = vmesh.faces()
            elif isinstance(obj, Points):
                vmesh = obj
                faces = []
            elif isinstance(obj, Volume):
                vmesh = obj.isosurface()
                faces = vmesh.faces()
            elif isinstance(obj, vedo.TetMesh):
                vmesh = obj.tomesh(fill=False)
                faces = vmesh.faces()
            else:
                print("ipygany backend: cannot process object type", [obj])
                continue

            vertices = vmesh.points()
            scals = vmesh.inputdata().GetPointData().GetScalars()
            if scals and not colorbar: # there is an active array, only pick the first
                aname = scals.GetName()
                arr = vmesh.pointdata[aname]
                parr = Component(name=aname, array=arr)
                if len(faces):
                    pmesh = PolyMesh(vertices=vertices, triangle_indices=faces, data={aname: [parr]})
                else:
                    pmesh = PointCloud(vertices=vertices, data={aname: [parr]})
                rng = scals.GetRange()
                colored_pmesh = IsoColor(pmesh, input=aname, min=rng[0], max=rng[1])
                if obj.scalarbar:
                    colorbar = ColorBar(colored_pmesh)
                    colormap_slider_range = FloatRangeSlider(value=rng,
                                                             min=rng[0], max=rng[1],
                                                             step=(rng[1] - rng[0]) / 100.)
                    jslink((colored_pmesh, 'range'), (colormap_slider_range, 'value'))
                    colormap = Dropdown(
                        options=colormaps,
                        description='Colormap:'
                    )
                    jslink((colored_pmesh, 'colormap'), (colormap, 'index'))

            else:
                if len(faces):
                    pmesh = PolyMesh(vertices=vertices, triangle_indices=faces)
                else:
                    pmesh = PointCloud(vertices=vertices)
                if vmesh.alpha() < 1:
                    colored_pmesh = Alpha(RGB(pmesh, input=tuple(vmesh.color())), input=vmesh.alpha())
                else:
                    colored_pmesh = RGB(pmesh, input=tuple(vmesh.color()))

            pmeshes.append(colored_pmesh)

        if colorbar:
            scene = AppLayout(
                    left_sidebar=Scene(pmeshes, background_color=bgcol),
                    right_sidebar=VBox((colormap_slider_range, #not working
                                        colorbar,
                                        colormap)),
                    pane_widths=[2, 0, 1],
            )
        else:
            scene = Scene(pmeshes, background_color=bgcol)

        settings.notebook_plotter = scene



    ####################################################################################
    elif '2d' in settings.notebookBackend.lower() and hasattr(vp, 'window') and vp.window:
        import PIL.Image
        try:
            import IPython
        except ImportError:
            raise Exception('IPython not available.')

        from vedo.io import screenshot
        settings.screeshotLargeImage = True
        nn = screenshot(returnNumpy=True, scale=settings.screeshotScale+2)
        pil_img = PIL.Image.fromarray(nn)
        settings.notebook_plotter = IPython.display.display(pil_img)

    return settings.notebook_plotter
コード例 #9
0

# In[15]:


#container for the main interface
from ipywidgets import AppLayout, Layout
title = 'Youtube Trend over Time'
Title = widgets.HTML(value = f"<b><font size='5' color='Black'>{title}</b>")
descrip="""How insane is it that sometimes you see the most amazing video on youtube, 
and yet it took nearly a decade for it to be popular? Or a subpar video which hits a 
million views within a week? A lot of it has to do with the way you market your content. 
Sponsoring advertisements for your posts helps, but it depends heavily on the 
textual supporting descriptions that you add. And an even deeper question is: what makes certain 
words more popular than others? What receives more hate by the public? Are certain 
topics more active during election years or during a pandemic? Fortunately, our platform and tools will figure it out for you
. We’re trying to create a simple 
platform which serves as a proof of concept for how sentiment analysis can be extended 
to utility on a daily basis, with a very wide customer demographic.
"""
Descrip=widgets.HTML(value = f"<b><font size='2' color='Black'>{descrip}</b>")
AppLayout(header=VBox([Title,Descrip]),
          left_sidebar=None,
          center=accordion,
          right_sidebar=None,
          footer=None)
          
          #widgets.IntSlider(description='c',
                                   #layout=Layout(height='auto', width='auto')))

コード例 #10
0
ファイル: compare_tab.py プロジェクト: pypm/ipypm
def get_tab(self):
    # keys for the two models in self.models_compare dictionary
    m_ids = ['a', 'b']

    def delta(cumul):
        diff = []
        for i in range(1, len(cumul)):
            diff.append(cumul[i] - cumul[i - 1])
        # first daily value is repeated since val(t0-1) is unknown
        diff.insert(0, diff[0])
        return diff

    def delta_weekly(cumul):
        diff = []
        for i in range(7, len(cumul), 7):
            diff.append((cumul[i] - cumul[i - 7]) / 7.)
        return diff

    def accum_weekly(daily):
        accum = []
        for i in range(7, len(daily), 7):
            sum = 0
            for j in range(i - 7, i):
                sum += daily[j]
            accum.append(sum / 7.)
        return accum

    def plot_total(self,
                   model,
                   sim_model,
                   region,
                   axis,
                   y_axis_type='linear',
                   y_max=0.,
                   scale=1.):

        start_day = (day0_widget.value - date(2020, 3, 1)).days

        region_data = None
        if region != 'None' and region != 'Simulation':
            region_data = self.data_description['regional_data'][region]

        for pop_name in model.populations:
            pop = model.populations[pop_name]
            if not pop.hidden:
                t = range(len(pop.history))
                axis.plot(t,
                          np.array(pop.history) * scale,
                          lw=2,
                          label=pop_name,
                          color=pop.color)

                if region_data is not None:
                    if pop_name in region_data:
                        if 'total' in region_data[pop_name]:
                            filename = region_data[pop_name]['total'][
                                'filename']
                            header = region_data[pop_name]['total']['header']
                            data = self.pd_dict[filename][header].values
                            td = range(len(data))
                            axis.scatter(td[start_day:],
                                         data[start_day:],
                                         color=pop.color,
                                         zorder=1)

                if region == 'Simulation':
                    if self.sim_model is not None:
                        sim_pop = self.sim_model.populations[pop_name]
                        if hasattr(sim_pop, 'show_sim') and sim_pop.show_sim:
                            st = range(len(sim_pop.history))
                            axis.scatter(st[start_day:],
                                         sim_pop.history[start_day:],
                                         color=sim_pop.color,
                                         zorder=1)

        title = 'Totals'
        if region_data is not None:
            title += ' - ' + region
        if region == 'Simulation':
            title += ' - Simulation'
        axis.set_title(title)
        axis.legend()
        axis.set_yscale(y_axis_type)

        day_offset = (day0_widget.value - model.t0).days
        axis.set_xlim(left=day_offset, right=n_days_widget.value)
        if y_axis_type == 'log':
            axis.set_ylim(bottom=3)
        else:
            axis.set_ylim(bottom=0)
        if (y_max > 0.):
            axis.set_ylim(top=y_max)

    def plot_daily(self,
                   model,
                   sim_model,
                   region,
                   axis,
                   y_axis_type='linear',
                   y_max=0.,
                   scale=1.):

        start_day = (day0_widget.value - date(2020, 3, 1)).days

        region_data = None
        if region != 'None' and region != 'Simulation':
            region_data = self.data_description['regional_data'][region]

        for pop_name in model.populations:
            pop = model.populations[pop_name]
            if not pop.hidden and pop.monotonic:
                daily = delta(pop.history)
                t = range(len(daily))
                axis.step(t,
                          np.array(daily) * scale,
                          lw=2,
                          label=pop_name,
                          color=pop.color)

                if region_data is not None:
                    if pop_name in region_data:
                        if 'daily' in region_data[pop_name]:
                            filename = region_data[pop_name]['daily'][
                                'filename']
                            header = region_data[pop_name]['daily']['header']
                            data = self.pd_dict[filename][header].values
                            td = range(len(data))
                            axis.scatter(td[start_day:],
                                         data[start_day:],
                                         color=pop.color,
                                         s=10,
                                         zorder=1)
                            weekly_data = accum_weekly(data[start_day:])
                            tw = [
                                start_day + 3.5 + i * 7
                                for i in range(len(weekly_data))
                            ]
                            axis.scatter(tw,
                                         weekly_data,
                                         color=pop.color,
                                         marker='*',
                                         s=100,
                                         zorder=1)
                        else:
                            filename = region_data[pop_name]['total'][
                                'filename']
                            header = region_data[pop_name]['total']['header']
                            data = self.pd_dict[filename][header].values
                            daily_data = delta(data)
                            td = range(len(daily_data))
                            axis.scatter(td[start_day:],
                                         daily_data[start_day:],
                                         color=pop.color,
                                         s=10,
                                         zorder=1)
                            weekly_data = delta_weekly(data[start_day:])
                            tw = [
                                start_day + 3.5 + i * 7
                                for i in range(len(weekly_data))
                            ]
                            axis.scatter(tw,
                                         weekly_data,
                                         color=pop.color,
                                         marker='*',
                                         s=100,
                                         zorder=1)

                if region == 'Simulation':
                    if self.sim_model is not None:
                        sim_pop = self.sim_model.populations[pop_name]
                        if hasattr(sim_pop, 'show_sim') and sim_pop.show_sim:
                            sim_daily = delta(sim_pop.history)
                            st = range(len(sim_daily))
                            axis.scatter(st[start_day:],
                                         sim_daily[start_day:],
                                         color=sim_pop.color,
                                         s=10,
                                         zorder=1)
                            weekly_data = delta_weekly(
                                sim_pop.history[start_day:])
                            tw = [
                                start_day + 3.5 + i * 7
                                for i in range(len(weekly_data))
                            ]
                            axis.scatter(tw,
                                         weekly_data,
                                         color=pop.color,
                                         marker='*',
                                         s=100,
                                         zorder=1)

        title = 'Daily'
        if region_data is not None:
            title += ' - ' + region
        if region == 'Simulation':
            title += ' - Simulation'
        axis.set_title(title)
        axis.legend()
        axis.set_yscale(y_axis_type)
        day_offset = (day0_widget.value - model.t0).days
        axis.set_xlim(left=day_offset, right=n_days_widget.value)
        if y_axis_type == 'log':
            axis.set_ylim(bottom=3)
        else:
            axis.set_ylim(bottom=0)
        if (y_max > 0.):
            axis.set_ylim(top=y_max)

    day0_widget = widgets.DatePicker(description='day_0:',
                                     value=date(2020, 3, 1),
                                     tooltip='First day to show on plots')

    n_days = (date.today() - self.model_t0.value).days
    n_days = n_days - n_days % 10 + 10

    n_days_widget = widgets.BoundedIntText(
        value=n_days,
        min=10,
        max=999,
        step=1,
        description='n_days:',
        tooltip='number of days to model: sets the upper time range of plots')

    plot_type = widgets.Dropdown(
        options=['linear total', 'log total', 'linear daily', 'log daily'],
        value='linear total',
        description='Plot Type:',
        tooltip='Type of plot to show')

    plot_scaled = widgets.Dropdown(
        options=['People', 'per 1000 people', 'per 1M people'],
        value='People',
        description='Plot scaling:',
        tooltip='Raw numbers or scaled?',
        disabled=False)

    plot_compare = widgets.Dropdown(
        options=['Side by side', 'Overlay'],
        value='Side by side',
        description='Compare:',
        tooltip='Select how you would like to make the comparison',
        disabled=True)

    y_max_compare = widgets.BoundedFloatText(
        value=0.,
        min=0.,
        max=1.E8,
        step=100.,
        description='y_max:',
        tooltip='maximum of vertical axis for Plots (0 -> autoscale)')

    plot_output = widgets.Output()

    plot_button = widgets.Button(description='  Plot',
                                 button_style='',
                                 tooltip='Run model and plot result',
                                 icon='check')

    def make_plot(b):
        plot_output.clear_output(True)
        if len(self.models_compare) < 2:
            with plot_output:
                print(
                    'You must first load comparison models A and B. Go to the "Open" tab.'
                )
        else:
            for i in range(2):
                m_id = m_ids[i]
                self.models_compare[m_id].reset()
                self.models_compare[m_id].evolve_expectations(
                    n_days_widget.value)

            with plot_output:

                if plot_compare.value == 'Side by side':

                    fig, axes = plt.subplots(1, 2, figsize=(16, 7))
                    y_axis_type = 'linear'
                    if 'linear' not in plot_type.value:
                        y_axis_type = 'log'
                    y_max = y_max_compare.value

                    for i in range(2):
                        axis = axes[i]
                        m_id = m_ids[i]
                        model = self.models_compare[m_id]
                        region_dropdown = self.region_dropdowns[i]
                        region = region_dropdown.value

                        scale = 1.
                        scale_text = 'Number of People'
                        if plot_scaled.value in [
                                'per 1000 people', 'per 1M people'
                        ]:
                            if m_id in self.models_total_population:
                                if self.models_total_population[
                                        m_id] is not None:
                                    tot_pop = self.models_total_population[
                                        m_id]
                                    if tot_pop > 0:
                                        if plot_scaled.value == 'per 1000 people':
                                            scale = 1000. / tot_pop
                                        else:
                                            scale = 1000000. / tot_pop
                                        scale_text = plot_scaled.value

                        t0text = model.t0.strftime("%b %d")

                        sim_model = None
                        if region == 'Simulation':
                            sim_model = copy.deepcopy(model)
                            sim_model.reset()
                            sim_model.generate_data(n_days_widget.value)

                        if 'total' in plot_type.value:
                            plot_total(self, model, sim_model, region, axis,
                                       y_axis_type, y_max, scale)
                        else:
                            plot_daily(self, model, sim_model, region, axis,
                                       y_axis_type, y_max, scale)

                        plot_improvements(axis, t0text, scale_text)

                else:
                    pass
                    # to be implemented!

                plt.suptitle(comparison_notes.value,
                             x=0.1,
                             size='small',
                             ha='left')
                self.last_plot = plt.gcf()
                plt.show()

    def plot_improvements(axis, t0text, scale_text):
        axis.set_xlabel('days since ' + t0text,
                        horizontalalignment='right',
                        position=(1., -0.1))
        axis.set_ylabel(scale_text)

        pypm_props = dict(boxstyle='round', facecolor='blue', alpha=0.1)
        axis.text(0.01,
                  1.02,
                  'pyPM.ca',
                  transform=axis.transAxes,
                  fontsize=10,
                  verticalalignment='bottom',
                  bbox=pypm_props)

    plot_button.on_click(make_plot)

    # This will generally be called before data has been read, but will
    # be populated once the datafile is read

    region_list, region_selected = get_region_list(self)
    self.region_dropdowns = [
        widgets.Dropdown(options=region_list, description='Region data:'),
        widgets.Dropdown(options=region_list, description='Region data:')
    ]

    plot_folder = widgets.Text(value='.',
                               placeholder='relative to current folder',
                               description='Folder:')

    plot_filename = widgets.Text(value='',
                                 tooltip='name',
                                 placeholder='filename',
                                 description='Filename:')

    def save_plot_file(b):
        pfn = plot_filename.value
        if len(pfn) > 0:
            # plot_filename = self.plot_folder_text_widget.value+'/'+pfn
            p_filename = pfn
            pfolder = plot_folder.value
            if pfolder not in ['', '.']:
                # plot_filename = self.plot_folder_text_widget.value+\
                #    '/'+pfolder+'/'+pfn
                p_filename = pfolder + '/' + pfn
            self.last_plot.savefig(p_filename)
            plot_filename.value = ''

    header_html = widgets.VBox([
        widgets.HTML(
            value=
            "<h1><a href:='https://www.pypm.ca'>pyPM.ca</a></h1><p style='font-size: 26px;'>compare</p>",
            placeholder='',
            description='')
    ])

    hspace = widgets.HTML(value="&nbsp;" * 24,
                          placeholder='Some HTML',
                          description='')

    model_blocks = [
        widgets.VBox([self.model_names[0], self.model_descriptions[0]]),
        widgets.VBox([self.model_names[1], self.model_descriptions[1]])
    ]

    header_save_hspace = widgets.HTML(value="&nbsp;" * 8,
                                      placeholder='Some HTML',
                                      description='')

    plot_save_button = widgets.Button(
        description='  Save plot',
        button_style='',
        tooltip='Save plot to the specified file',
        icon='image')

    plot_save_button.on_click(save_plot_file)

    plot_save = widgets.VBox([
        widgets.HBox([plot_button, plot_save_button]), plot_folder,
        plot_filename
    ])

    comparison_notes = widgets.Textarea(
        value='',
        tooltip='Notes on the comparison',
        placeholder='Notes on the comparison, to be printed on saved plot')

    header_hbox = widgets.HBox(
        [header_html, hspace, comparison_notes, header_save_hspace, plot_save])

    left_box = widgets.VBox([model_blocks[0], self.region_dropdowns[0]])
    center_box = widgets.VBox(
        [day0_widget, n_days_widget, plot_type, plot_scaled, y_max_compare])
    right_box = widgets.VBox([model_blocks[1], self.region_dropdowns[1]])

    return AppLayout(header=header_hbox,
                     left_sidebar=left_box,
                     center=center_box,
                     right_sidebar=right_box,
                     footer=plot_output,
                     pane_widths=[2, 2, 2],
                     pane_heights=[1, 2, '470px'])
コード例 #11
0
ファイル: key_point_detector.py プロジェクト: inJAJA/Study
def layout(header, left, right):
    layout = AppLayout(header=header,
                       left_sidebar=left,
                       center=None,
                       right_sidebar=right)
    return layout
コード例 #12
0
def visualize_it(res_file, temp_dir=".temp", default_index=0):
    import pathlib

    import meshio
    from ipygany import ColorBar, IsoColor, PolyMesh, Scene, Warp, colormaps
    from IPython.display import clear_output, display
    from ipywidgets import AppLayout, Dropdown, FloatSlider, VBox, jslink

    from ada.core.vector_utils import vector_length

    res_file = pathlib.Path(res_file).resolve().absolute()
    suffix = res_file.suffix.lower()

    suffix_map = {".rmed": "med", ".vtu": None}

    imesh = meshio.read(res_file, file_format=suffix_map[suffix])
    imesh.point_data = {
        key.replace(" ", "_"): value
        for key, value in imesh.point_data.items()
    }

    def filter_keys(var):
        if suffix == ".vtu" and var != "U":
            return False
        if suffix == ".rmed" and var == "point_tags":
            return False
        return True

    warp_data = [key for key in filter(filter_keys, imesh.point_data.keys())]
    magn_data = []
    for d in warp_data:
        res = [vector_length(v[:3]) for v in imesh.point_data[d]]
        res_norm = [r / max(res) for r in res]
        magn_data_name = f"{d}_magn"
        imesh.point_data[magn_data_name] = np.array(res_norm, dtype=np.float64)
        magn_data.append(magn_data_name)

    imesh.field_data = {
        key: np.array(value)
        for key, value in imesh.field_data.items()
    }

    tf = (pathlib.Path(temp_dir).resolve().absolute() /
          res_file.name).with_suffix(".vtu")

    if tf.exists():
        os.remove(tf)
    os.makedirs(tf.parent, exist_ok=True)
    imesh.write(tf)

    mesh = PolyMesh.from_vtk(str(tf))
    mesh.default_color = "gray"

    warp_vec = warp_data[default_index]
    try:
        colored_mesh = IsoColor(mesh,
                                input=magn_data[default_index],
                                min=0.0,
                                max=1.0)
    except KeyError as e:
        trace_str = traceback.format_exc()
        logging.error(f'KeyError "{e}"\nTrace: "{trace_str}"')
        colored_mesh = mesh
    except ImportError as e:
        trace_str = traceback.format_exc()
        logging.error("This might be")
        logging.error(f'ImportError "{e}"\nTrace: "{trace_str}"')
        return

    warped_mesh = Warp(colored_mesh, input=warp_vec, warp_factor=0.0)

    warp_slider = FloatSlider(value=0.0, min=-1.0, max=1.0)

    jslink((warped_mesh, "factor"), (warp_slider, "value"))

    # Create a colorbar widget
    colorbar = ColorBar(colored_mesh)

    # Colormap choice widget
    colormap = Dropdown(options=colormaps, description="colormap:")

    jslink((colored_mesh, "colormap"), (colormap, "index"))

    # EigenValue choice widget
    eig_map = Dropdown(options=warp_data, description="Data Value:")

    scene = Scene([warped_mesh])
    app = AppLayout(left_sidebar=scene,
                    right_sidebar=VBox(
                        (eig_map, warp_slider, colormap, colorbar)),
                    pane_widths=[2, 0, 1])

    def change_input(change):
        vec_name = change["new"]
        logging.info(vec_name)
        colored_mesh.input = vec_name + "_magn"
        warped_mesh.input = vec_name
        # Highly inefficient but likely needed due to bug https://github.com/QuantStack/ipygany/issues/69
        clear_output()
        display(app)

    eig_map.observe(change_input, names=["value"])

    return app
コード例 #13
0
class CostWidget(object):
    def __init__(self, model):

        self._model = model

    @property
    def app(self):

        app_params = self._model._params.copy()
        cost = self._model.compute().values["Total Cost [$/tCO2]"]

        rsliders = {}
        esliders = {}
        all_sliders = {}

        labels = {
            "Scale [tCO2/year]": "Scale [tCO2/year]",
            "DAC Capacity Factor": "DAC Capacity Factor",
            "DAC Section Lead Time [years]": "DAC Section Lead Time [years]",
            "Total Capex [$]": "Overnight Capex [M$] *",
            "Electric Power Requierement [MW]":
            "Electric Power Requierement [MW] *",
            "Thermal [GJ/tCO2]": "Thermal [GJ/tCO2] *",
            "Fixed O+M Costs [$/tCO2]": "Fixed O+M Costs [$/tCO2]*",
            "Varible O+M Cost [$/tCO2]": "Varible O+M Cost [$/tCO2] *",
            "Economic Lifetime [years]": "Economic Lifetime [years]",
            "WACC [%]": "WACC [%]",
            "Natural Gas Cost [$/mmBTU]": "Natural Gas Cost [$/mmBTU]",
        }

        # --------- callbacks --------- #
        def update_cost(app_params):
            cost = self._model.compute().values["Total Cost [$/tCO2]"]
            result.value = f"<h1>${cost:0.2f}<h1/>"

        def on_value_change(param, change):
            app_params[param] = change["new"]
            update_cost(app_params)

        def set_defaults(change):
            case = change["new"]
            p = default_params(case.lower())  # TODO
            app_params.update(p)
            for k, v in app_params.items():
                if k in all_sliders:
                    all_sliders[k].value = v

        # --------- callbacks --------- #

        header = HTML("""
        <h1> DAC Cost Estimator </h1>

        <b>By NOAH MCQUEEN and JOE HAMMAN</b>

        <div style="width:800px"
            <p>
                How much does it cost to build a Direct Air Capture facility? To help answer this question, we've built a calculator that takes the most important variables that drive the cost of building and operating a DAC plant. To find out more about the fundementals and assumptions in the calcuator, check out Noah's paper...
            </p>
        </div>
        """)

        # presets
        presets = Dropdown(description="Preset Scenario",
                           options=["Low", "High"],
                           value="Low")
        presets.observe(set_defaults, names="value")

        # report data

        result = HTML(value=f"<h1>${cost:0.2f}<h1/>")
        right = VBox(
            [HTML("<b>You can build this DAC plant for ... </b>"), result])

        rsliders["Scale [tCO2/year]"] = FloatLogSlider(
            min=1, max=12, step=0.1, value=app_params["Scale [tCO2/year]"])
        rsliders["DAC Capacity Factor"] = FloatSlider(
            min=0,
            max=1,
            step=0.01,
            readout_format=".2%",
            value=app_params["DAC Capacity Factor"])
        rsliders["DAC Section Lead Time [years]"] = IntSlider(
            min=1, max=6, value=app_params["DAC Section Lead Time [years]"])
        rsliders["Total Capex [$]"] = FloatSlider(
            value=app_params["Total Capex [$]"])
        rsliders["Electric Power Requierement [MW]"] = FloatSlider(
            value=app_params["Electric Power Requierement [MW]"])
        rsliders["Thermal [GJ/tCO2]"] = FloatSlider(
            value=app_params["Thermal [GJ/tCO2]"])
        rsliders["Fixed O+M Costs [$/tCO2]"] = FloatSlider(
            value=app_params["Fixed O+M Costs [$/tCO2]"])
        rsliders["Varible O+M Cost [$/tCO2]"] = FloatSlider(
            value=app_params["Varible O+M Cost [$/tCO2]"])

        for key, slider in rsliders.items():
            slider.observe(functools.partial(on_value_change, key),
                           names="value")

        details = HTML("""
        <h2>Report Data</h2>

        <p>Parameters from the <em>Report Data</em> worksheet...</p>
        """)
        report_data = VBox([details] + [
            HBox([Label(labels[k], layout={"width": "250px"}), s])
            for k, s in rsliders.items()
        ])

        details = HTML("""
        <h2>Economic Data</h2>

        <p>Parameters from the <em>Economic Parameters</em> worksheet...</p>
        """)

        # economic parameters
        esliders["Economic Lifetime [years]"] = IntSlider(
            min=1, max=50, value=app_params["Economic Lifetime [years]"])
        esliders["WACC [%]"] = FloatSlider(min=0,
                                           max=1,
                                           step=0.01,
                                           readout_format=".2%",
                                           value=app_params["WACC [%]"])
        esliders["Natural Gas Cost [$/mmBTU]"] = FloatSlider(
            min=0,
            max=10,
            step=0.1,
            value=app_params["Natural Gas Cost [$/mmBTU]"])

        for key, slider in esliders.items():
            slider.observe(functools.partial(on_value_change, key),
                           names="value")

        econ_data = VBox([details] + [
            HBox([Label(labels[k], layout={"width": "250px"}), s])
            for k, s in esliders.items()
        ])

        all_sliders = {**rsliders, **esliders}

        center = VBox([presets, report_data, econ_data])

        return AppLayout(header=header,
                         center=center,
                         right_sidebar=right,
                         width="900px")
コード例 #14
0
ファイル: mcmc_tab.py プロジェクト: pypm/ipypm
def get_tab(self):

    output = widgets.Output()
    plot_output = widgets.Output()

    def plot_total(self, models, axis, y_axis_type='linear'):

        region = self.region_dropdown.value
        region_data = None
        if self.region_dropdown.value != 'None' and self.region_dropdown.value != 'Simulation':
            region_data = self.data_description['regional_data'][region]

        for pop_name in self.model.populations:
            pop = self.model.populations[pop_name]
            if (not pop.hidden) and pop.show_sim:
                t = range(len(pop.history))
                axis.plot(t,
                          pop.history,
                          lw=2,
                          label=pop_name,
                          color=pop.color,
                          zorder=2)

                x_ref = self.optimizer.data_range[1]
                y_ref = pop.history[x_ref]

                lower = []
                upper = []
                x_extend = range(x_ref, self.n_days_widget.value)
                for x in x_extend:
                    dy_ref = pop.history[x] - y_ref
                    values = []
                    for model in models:
                        sim_pop = model.populations[pop_name]
                        # scale the models to the same value at x_ref
                        scale = pop.history[x_ref] / sim_pop.history[x_ref]
                        values.append((sim_pop.history[x] -
                                       sim_pop.history[x_ref]) * scale -
                                      dy_ref)
                    lower.append(np.percentile(values, 2.5))
                    upper.append(np.percentile(values, 97.5))

                ref_hist = np.array(
                    pop.history[x_ref:self.n_days_widget.value])
                lower = np.array(lower)
                upper = np.array(upper)
                #symmetrize, since calculation with auto_covariance yields asymmetric solutions
                # - but for a monotonic function there should be asymmetry!
                #dy = np.maximum(np.abs(np.array(lower)), np.abs(np.array(upper)))
                #axis.fill_between(x_extend, ref_hist-dy, ref_hist+dy, color=pop.color, zorder=0, alpha=0.3)
                axis.fill_between(x_extend,
                                  ref_hist + lower,
                                  ref_hist + upper,
                                  color=pop.color,
                                  zorder=0,
                                  alpha=0.3)

                if region_data is not None:
                    if pop_name in region_data:
                        if 'total' in region_data[pop_name]:
                            filename = region_data[pop_name]['total'][
                                'filename']
                            header = region_data[pop_name]['total']['header']
                            data = self.pd_dict[filename][header].values
                            td = range(len(data))
                            axis.scatter(td, data, color=pop.color, zorder=1)

                if region == 'Simulation':
                    if self.sim_model is not None:
                        sim_pop = self.sim_model.populations[pop_name]
                        if hasattr(sim_pop, 'show_sim') and sim_pop.show_sim:
                            st = range(len(sim_pop.history))
                            axis.scatter(st,
                                         sim_pop.history,
                                         color=sim_pop.color,
                                         zorder=1)

        title = 'Totals'
        if region_data is not None:
            title += ' - ' + region
        if region == 'Simulation':
            title += ' - Simulation (' + str(self.seed_text_widget.value) + ')'
        axis.set_title(title)
        axis.legend()
        axis.set_yscale(y_axis_type)
        axis.set_xlim(left=0, right=self.n_days_widget.value)
        if y_axis_type == 'log':
            axis.set_ylim(bottom=3)
        else:
            axis.set_ylim(bottom=0)

    def make_plot(models):
        output.clear_output(True)
        plot_output.clear_output(True)

        self.model.reset()
        self.model.evolve_expectations(self.n_days_widget.value)

        with plot_output:

            fig, axes = plt.subplots(1, 2, figsize=(16, 7))

            axis = axes[0]
            y_axis_type = 'linear'
            plot_total(self, models, axis, y_axis_type)

            plot_improvements(axis)

            axis = axes[1]
            y_axis_type = 'log'
            plot_total(self, models, axis, y_axis_type)

            plot_improvements(axis)

            self.last_plot = plt.gcf()
            plt.show()

    def plot_improvements(axis):

        axis.set_xlabel('days since t0',
                        horizontalalignment='right',
                        position=(1., -0.1))
        axis.set_ylabel('Number of people')

        pypm_props = dict(boxstyle='round', facecolor='blue', alpha=0.1)
        axis.text(0.01,
                  1.02,
                  'pyPM.ca',
                  transform=axis.transAxes,
                  fontsize=10,
                  verticalalignment='bottom',
                  bbox=pypm_props)

    variable_checkbox = widgets.Checkbox(value=False,
                                         description='variable',
                                         disabled=False)
    prior_par_text = widgets.Text(value='0,1',
                                  placeholder='prior parameters eg. 0.,1.',
                                  description='Prior pars:',
                                  disabled=True,
                                  continuous_update=False)
    prior_function_dropdown = widgets.Dropdown(options=['uniform', 'normal'],
                                               description='Prior:',
                                               disabled=True)
    mcmc_step_widget = widgets.FloatText(value=0.,
                                         description='mcmc step:',
                                         continuous_update=False,
                                         disabled=True)

    def get_bounds(parameter, bound_text):
        # decode the bound_text
        bounds = [parameter.get_min(), parameter.get_max()]
        if bound_text.find(':') > 0:
            bound_split = bound_text.split(':')
            if len(bound_split) == 2:
                bounds[0] = float(bound_split[0])
                bounds[1] = float(bound_split[1])
                if parameter.parameter_type == 'int':
                    bounds[0] = int(bounds[0])
                    bounds[1] = int(bounds[1])
        return bounds

    def get_bounds_text(parameter):
        # turn the existing bounds into bound_text
        if parameter.parameter_type == 'float':
            bound_text = "{0:0.3f}:{1:0.3f}".format(parameter.get_min(),
                                                    parameter.get_max())
        elif parameter.parameter_type == 'int':
            bound_text = str(int(parameter.get_min())) + ':' + str(
                int(parameter.get_max()))
        return bound_text

    def get_par_vals(parameter, par_vals_text):
        # decode the par_vals
        par_vals = [(parameter.get_min() + parameter.get_max()) / 2,
                    (parameter.get_max() - parameter.get_min()) / 2]
        if par_vals_text.find(',') > 0:
            par_vals_split = par_vals_text.split(',')
            if len(par_vals_split) == 2:
                par_vals[0] = float(par_vals_split[0])
                par_vals[1] = float(par_vals_split[1])
                if parameter.parameter_type == 'int':
                    par_vals[0] = int(par_vals[0])
                    par_vals[1] = int(par_vals[1])
        return par_vals

    def get_par_vals_text(parameter):
        # turn the existing par_vals into par_vals_text
        par_vals_text = ''
        if parameter.parameter_type == 'float':
            if parameter.prior_function is None or parameter.prior_function == 'uniform':
                if parameter.prior_parameters is None:
                    mean = (parameter.get_min() + parameter.get_max()) / 2
                    half_width = (parameter.get_max() -
                                  parameter.get_min()) / 2
                    par_vals_text = "{0:0.3f},{1:0.3f}".format(
                        mean, half_width)
                else:
                    mean = parameter.prior_parameters['mean']
                    half_width = parameter.prior_parameters['half_width']
                    par_vals_text = "{0:0.3f},{1:0.3f}".format(
                        mean, half_width)
            else:
                mean = parameter.prior_parameters['mean']
                sigma = parameter.prior_parameters['sigma']
                par_vals_text = "{0:0.3f},{1:0.3f}".format(mean, sigma)
        elif parameter.parameter_type == 'int':
            if parameter.prior_function is None:
                if parameter.prior_parameters is None:
                    mean = (parameter.get_min() + parameter.get_max()) / 2
                    half_width = (parameter.get_max() -
                                  parameter.get_min()) / 2
                    par_vals_text = str(mean) + ',' + str(half_width)
                else:
                    mean = parameter.prior_parameters['mean']
                    half_width = parameter.prior_parameters['half_width']
                    par_vals_text = str(mean) + ',' + str(half_width)
        return par_vals_text

    def variable_checkbox_eventhandler(change):
        # update the status of the model parameter - set bounds if appropriate
        output.clear_output(True)
        par_name = self.full_par_dropdown.value[2:]
        par = self.model.parameters[par_name]
        status_changed = False
        if variable_checkbox.value:
            if par.get_status() == 'fixed':
                status_changed = True
                par.set_variable(None, None)
                prior_par_text.disabled = False
                prior_par_text.value = get_par_vals_text(par)
                prior_function_dropdown.disabled = False
                if par.prior_function is None or par.prior_function == 'uniform':
                    prior_function_dropdown.value = 'uniform'
                else:
                    prior_function_dropdown.value = 'normal'
                mcmc_step_widget.disabled = False
                if par.mcmc_step is not None:
                    mcmc_step_widget.value = par.mcmc_step

        else:
            prior_par_text.disabled = True
            prior_function_dropdown.disabled = True
            mcmc_step_widget.disabled = True
            if par.get_status() == 'variable':
                status_changed = True
                par.set_fixed()
                with output:
                    print('Parameter ' + par_name + ' now set to fixed.')
        # update parameter list, if a variable changed its status
        # after updating, go back to select the revised par
        if status_changed:
            selected = self.full_par_dropdown.value
            prefix = selected[:2]
            full_par_names = get_par_list(self)
            self.full_par_dropdown.options = full_par_names
            if prefix == '  ':
                prefix = '* '
            else:
                prefix = '  '
            self.full_par_dropdown.value = prefix + selected[2:]

    variable_checkbox.observe(variable_checkbox_eventhandler, names='value')

    def prior_function_dropdown_eventhandler(change):
        par_name = self.full_par_dropdown.value[2:]
        par = self.model.parameters[par_name]
        prior_par_text.value = get_par_vals_text(par)

    prior_function_dropdown.observe(prior_function_dropdown_eventhandler,
                                    names='value')

    def prior_par_text_eventhandler(change):
        # update the prior values
        par_name = self.full_par_dropdown.value[2:]
        par = self.model.parameters[par_name]
        if variable_checkbox.value:
            par_vals = get_par_vals(par, prior_par_text.value)
            if prior_function_dropdown.value == 'uniform':
                prior_dict = {'mean': par_vals[0], 'half_width': par_vals[1]}
                par.set_variable('uniform', prior_dict)
            else:
                prior_dict = {'mean': par_vals[0], 'sigma': par_vals[1]}
                par.set_variable('norm', prior_dict)

    prior_par_text.observe(prior_par_text_eventhandler, names='value')

    def mcmc_step_change_eventhandler(change):
        par_name = self.full_par_dropdown.value[2:]
        par = self.model.parameters[par_name]
        par.mcmc_step = mcmc_step_widget.value

    mcmc_step_widget.observe(mcmc_step_change_eventhandler, names='value')

    def par_dropdown_eventhandler(change):
        # update list of visible parameters in case it has changed
        full_par_names = get_par_list(self)
        self.full_par_dropdown.options = full_par_names

        par_name = self.full_par_dropdown.value[2:]
        prefix = self.full_par_dropdown.value[:2]
        par = self.model.parameters[par_name]
        if prefix == '* ':
            variable_checkbox.value = True
            prior_par_text.disabled = False
            prior_par_text.value = get_par_vals_text(par)
            prior_function_dropdown.disabled = False
            if par.prior_function is not None and par.prior_function == 'norm':
                prior_function_dropdown.value = 'normal'
            else:
                prior_function_dropdown.value = 'uniform'
            mcmc_step_widget.disabled = False
            if hasattr(par, 'mcmc_step') and par.mcmc_step is not None:
                mcmc_step_widget.value = par.mcmc_step
        else:
            variable_checkbox.value = False
            prior_par_text.disabled = True
            prior_function_dropdown.disabled = True
            mcmc_step_widget.disabled = True

    self.full_par_dropdown.observe(par_dropdown_eventhandler, names='value')

    n_rep_widget = widgets.IntText(value=100,
                                   description='repetitions:',
                                   continuous_update=False,
                                   disabled=False)
    n_dof_widget = widgets.IntText(value=60,
                                   description='# dof:',
                                   continuous_update=False,
                                   disabled=False)
    chi2n_widget = widgets.FloatText(value=500.,
                                     description='mean chi2n',
                                     continuous_update=False,
                                     disabled=False)
    n_mcmc_widget = widgets.IntText(value=5000,
                                    description='# MCMC:',
                                    continuous_update=False,
                                    disabled=False)
    chi2f_checkbox = widgets.Checkbox(value=False,
                                      description='calculate chi2f',
                                      disabled=False)

    auto_cov_button = widgets.Button(
        description='calc autocov',
        button_style='',
        tooltip='Calculate the autocovariance matrix',
        icon='')
    sim_gof_button = widgets.Button(
        description='calc sim gof',
        button_style='',
        tooltip=
        'Calculate the goodness of fit statistic distribution for simulated samples',
        icon='')
    mcmc_button = widgets.Button(description='   Do MCMC',
                                 button_style='',
                                 tooltip='Produce an MCMC chain',
                                 icon='check')
    mcmc_plot_button = widgets.Button(description='mcmc plot',
                                      button_style='',
                                      tooltip='make a plot',
                                      icon='')

    def do_auto_cov(b):
        output.clear_output(True)
        n_rep = n_rep_widget.value
        n_points = self.optimizer.data_range[1] - self.optimizer.data_range[0]
        if n_rep < 2 * n_points:
            with output:
                print('Not enough repititions to calculate the')
                print('autocovariance. Should be more than double the')
                print('number of data points.')
        else:
            self.optimizer.calc_auto_covariance(n_rep)
            with output:
                print('Autocovariance calculated')

    auto_cov_button.on_click(do_auto_cov)

    def do_sim_gof(b):
        output.clear_output(True)
        n_rep = n_rep_widget.value
        self.optimizer.calc_chi2f = chi2f_checkbox.value
        self.optimizer.calc_chi2s = True
        self.optimizer.calc_sim_gof(n_rep)
        with output:
            print('Simulated goodness of fit distribution calculated')
            print('Take note of these values:')
            print('chi2d = {0:0.1f}'.format(self.optimizer.chi2d))
            print('chi2m = {0:0.1f} sd = {1:0.1f}'.format(
                self.optimizer.chi2m, self.optimizer.chi2m_sd))
            print('chi2n = {0:0.1f} sd = {1:0.1f}'.format(
                self.optimizer.chi2n, self.optimizer.chi2n_sd))
            if chi2f_checkbox.value:
                print('chi2f = {0:0.1f} sd = {1:0.1f}'.format(
                    self.optimizer.chi2f, self.optimizer.chi2f_sd))
            print('chi2s = {0:0.1f} sd = {1:0.1f}'.format(
                self.optimizer.chi2s, self.optimizer.chi2s_sd))

    sim_gof_button.on_click(do_sim_gof)

    def do_mcmc(b):
        output.clear_output(True)
        status = True
        # check that autocovariance matrix is calculated
        if self.optimizer.auto_cov is None:
            status = False
            with output:
                print('Auto covariance is needed before starting MCMC')
        # check that mcmc steps are defined. Check there are no integer variables
        for par_name in self.model.parameters:
            par = self.model.parameters[par_name]
            if par.get_status() == 'variable':
                if par.parameter_type != 'float':
                    status = False
                    with output:
                        print(
                            'Only float parameters allowed in MCMC treatment')
                        print('Remove: ' + par.name)
                elif par.mcmc_step is None:
                    status = False
                    with output:
                        print('MCMC step size missing for: ' + par.name)

        if status:
            n_dof = n_dof_widget.value
            n_mcmc = n_mcmc_widget.value
            chi2n = chi2n_widget.value
            self.chain = self.optimizer.mcmc(n_dof, chi2n, n_mcmc)
            with output:
                print('MCMC chain produced.')
                print('fraction accepted =', self.optimizer.accept_fraction)

    mcmc_button.on_click(do_mcmc)

    def do_mcmc_plot(b):
        # draw 1/10 of the chain points at random
        # to produce an ensemble of data outcomes
        n_models = int(n_mcmc_widget.value / 10)
        n_days = self.n_days_widget.value
        models = []
        for i in range(n_models):
            sim_model = copy.deepcopy(self.model)
            ipnt = int(n_models * stats.uniform.rvs())
            link = self.chain[ipnt]
            for var_name in link:
                par = sim_model.parameters[var_name]
                par.set_value(link[var_name])
            sim_model.reset()
            # produce data not expectations
            sim_model.generate_data(n_days)
            models.append(sim_model)

        make_plot(models)

    mcmc_plot_button.on_click(do_mcmc_plot)

    def fix_all(b):
        full_par_names = get_par_list(self)
        changed_list = []
        for full_par_name in full_par_names:
            par_name = full_par_name[2:]
            prefix = full_par_name[:2]
            if prefix == '* ':
                par = self.model.parameters[par_name]
                par.set_fixed()
                changed_list.append(par_name)
        if len(changed_list) > 0:
            output.clear_output(True)
            # update the dropdown list
            full_par_names = get_par_list(self)
            self.full_par_dropdown.options = full_par_names
            with output:
                print('All variable parameters set to fixed:')
                print('\n'.join(changed_list))

    fix_button = widgets.Button(
        description='  Fix all',
        button_style='',
        tooltip='Change all variable parameters to fixed',
        icon='warning')

    fix_button.on_click(fix_all)

    def show_vars(b):
        plot_output.clear_output(True)

        with plot_output:
            print(ptt.variable_parameter_table(self.model, width=110))

    show_vars_button = widgets.Button(
        description='  Show variables',
        button_style='',
        tooltip='Show a table of variable parameters',
        icon='')
    show_vars_button.on_click(show_vars)

    hspace = widgets.HTML(value="&nbsp;" * 24,
                          placeholder='Some HTML',
                          description='')

    header_html = widgets.VBox([
        widgets.HTML(
            value=
            "<h1><a href:='https://www.pypm.ca'>pyPM.ca</a></h1><p style='font-size: 26px;'>MCMC</p>",
            placeholder='',
            description='')
    ])

    buttons = widgets.VBox([
        widgets.HBox([auto_cov_button, sim_gof_button]),
        widgets.HBox([mcmc_button, mcmc_plot_button])
    ])

    header_hbox = widgets.HBox(
        [header_html, hspace, show_vars_button, hspace, hspace, buttons])

    left_box = widgets.VBox([
        self.full_par_dropdown, variable_checkbox, prior_function_dropdown,
        prior_par_text, mcmc_step_widget,
        widgets.HBox([fix_button])
    ])
    right_box = widgets.VBox([
        n_rep_widget, chi2n_widget, n_dof_widget, n_mcmc_widget, chi2f_checkbox
    ])

    return AppLayout(header=header_hbox,
                     left_sidebar=left_box,
                     center=output,
                     right_sidebar=right_box,
                     footer=plot_output,
                     pane_widths=[2, 2, 2],
                     pane_heights=[1, 2, '460px'])
コード例 #15
0
def get_tab(self):
    def delta(cumul):
        diff = []
        for i in range(1, len(cumul)):
            diff.append(cumul[i] - cumul[i - 1])
        # first daily value is repeated since val(t0-1) is unknown
        diff.insert(0, diff[0])
        return diff

    def delta_weekly(cumul):
        diff = []
        for i in range(7, len(cumul), 7):
            diff.append((cumul[i] - cumul[i - 7]) / 7.)
        return diff

    def accum_weekly(daily):
        accum = []
        for i in range(7, len(daily), 7):
            sum = 0
            for j in range(i - 7, i):
                sum += daily[j]
            accum.append(sum / 7.)
        return accum

    def plot_total(self, axis, y_axis_type='linear', y_max=0., y_min=0.):

        start_day = (t0_widget.value - date(2020, 3, 1)).days

        region = self.region_dropdown.value
        region_data = None
        if self.region_dropdown.value != 'None' and self.region_dropdown.value != 'Simulation':
            region_data = self.data_description['regional_data'][region]

        for pop_name in self.model.populations:
            pop = self.model.populations[pop_name]
            if not pop.hidden:
                t = range(len(pop.history))
                axis.plot(t[start_day:],
                          pop.history[start_day:],
                          lw=2,
                          label=pop_name,
                          color=pop.color,
                          zorder=2)

                if region_data is not None:
                    if pop_name in region_data:
                        if 'total' in region_data[pop_name]:
                            filename = region_data[pop_name]['total'][
                                'filename']
                            header = region_data[pop_name]['total']['header']
                            data = self.pd_dict[filename][header].values
                            td = range(len(data))
                            axis.scatter(td[start_day:],
                                         data[start_day:],
                                         color=pop.color,
                                         zorder=1)

                if region == 'Simulation':
                    if self.sim_model is not None:
                        sim_pop = self.sim_model.populations[pop_name]
                        if hasattr(sim_pop, 'show_sim') and sim_pop.show_sim:
                            st = range(len(sim_pop.history))
                            axis.scatter(st[start_day:],
                                         sim_pop.history[start_day:],
                                         color=sim_pop.color,
                                         zorder=1)

        title = 'Totals'
        if region_data is not None:
            title += ' - ' + region
        if region == 'Simulation':
            title += ' - Simulation (' + str(self.get_seed_value()) + ')'
        axis.set_title(title)
        axis.legend()
        axis.set_yscale(y_axis_type)
        axis.set_xlim(left=start_day, right=self.n_days_widget.value)
        if y_axis_type == 'log':
            axis.set_ylim(bottom=max(3, y_min))
        else:
            axis.set_ylim(bottom=y_min)
        if (y_max > 0.):
            axis.set_ylim(top=y_max)

    def plot_residual(self, axis, y_max=0.):

        start_day = (t0_widget.value - date(2020, 3, 1)).days

        region = self.region_dropdown.value
        region_data = None
        if self.region_dropdown.value != 'None' and self.region_dropdown.value != 'Simulation':
            region_data = self.data_description['regional_data'][region]

        for pop_name in self.model.populations:
            pop = self.model.populations[pop_name]
            if not pop.hidden:
                #t = range(len(pop.history))
                #axis.plot(t, pop.history, lw=2, label=pop_name, color=pop.color, zorder=2)

                if region_data is not None:
                    if pop_name in region_data:
                        if 'total' in region_data[pop_name]:
                            filename = region_data[pop_name]['total'][
                                'filename']
                            header = region_data[pop_name]['total']['header']
                            data = self.pd_dict[filename][header].values
                            td = range(len(data))
                            residual = [data[i] - pop.history[i] for i in td]
                            axis.scatter(td[start_day:],
                                         residual[start_day:],
                                         label=pop_name,
                                         color=pop.color,
                                         zorder=1)

                if region == 'Simulation':
                    if self.sim_model is not None:
                        sim_pop = self.sim_model.populations[pop_name]
                        if hasattr(sim_pop, 'show_sim') and sim_pop.show_sim:
                            st = range(len(sim_pop.history))
                            residual = [
                                sim_pop.history[i] - pop.history[i] for i in st
                            ]
                            axis.scatter(st[start_day:],
                                         residual[start_day:],
                                         label=pop_name,
                                         color=sim_pop.color,
                                         zorder=1)

        title = 'Residuals: Totals'
        if region_data is not None:
            title += ' - ' + region
        if region == 'Simulation':
            title += ' - Simulation (' + str(self.get_seed_value()) + ')'
        axis.set_title(title)
        axis.legend()
        axis.set_xlim(left=0, right=self.n_days_widget.value)
        if (y_max > 0.):
            axis.set_ylim(top=y_max)
            axis.set_ylim(bottom=-y_max)

    def plot_daily(self, axis, y_axis_type='linear', y_max=0., y_min=0.):

        start_day = (t0_widget.value - date(2020, 3, 1)).days

        region = self.region_dropdown.value
        region_data = None
        if self.region_dropdown.value != 'None' and self.region_dropdown.value != 'Simulation':
            region_data = self.data_description['regional_data'][region]

        for pop_name in self.model.populations:
            pop = self.model.populations[pop_name]
            if not pop.hidden and pop.monotonic:
                daily = delta(pop.history)
                t = range(len(daily))
                axis.step(t[start_day:],
                          daily[start_day:],
                          lw=2,
                          label=pop_name,
                          color=pop.color,
                          zorder=2)

                if region_data is not None:
                    if pop_name in region_data:
                        if 'daily' in region_data[pop_name]:
                            filename = region_data[pop_name]['daily'][
                                'filename']
                            header = region_data[pop_name]['daily']['header']
                            data = self.pd_dict[filename][header].values
                            td = range(len(data))
                            axis.scatter(td[start_day:],
                                         data[start_day:],
                                         color=pop.color,
                                         s=10,
                                         zorder=1)
                            weekly_data = accum_weekly(data[start_day:])
                            tw = [
                                start_day + 3.5 + i * 7
                                for i in range(len(weekly_data))
                            ]
                            axis.scatter(tw,
                                         weekly_data,
                                         color=pop.color,
                                         marker='*',
                                         s=100,
                                         zorder=1)
                        else:
                            filename = region_data[pop_name]['total'][
                                'filename']
                            header = region_data[pop_name]['total']['header']
                            data = self.pd_dict[filename][header].values
                            daily_data = delta(data)
                            td = range(len(daily_data))
                            axis.scatter(td[start_day:],
                                         daily_data[start_day:],
                                         color=pop.color,
                                         s=10,
                                         zorder=1)
                            weekly_data = delta_weekly(data[start_day:])
                            tw = [
                                start_day + 3.5 + i * 7
                                for i in range(len(weekly_data))
                            ]
                            axis.scatter(tw,
                                         weekly_data,
                                         color=pop.color,
                                         marker='*',
                                         s=100,
                                         zorder=1)

                if region == 'Simulation':
                    if self.sim_model is not None:
                        sim_pop = self.sim_model.populations[pop_name]
                        if hasattr(sim_pop, 'show_sim') and sim_pop.show_sim:
                            sim_daily = delta(sim_pop.history)
                            st = range(len(sim_daily))
                            axis.scatter(st[start_day:],
                                         sim_daily[start_day:],
                                         color=sim_pop.color,
                                         s=10,
                                         zorder=1)
                            weekly_data = delta_weekly(
                                sim_pop.history[start_day:])
                            tw = [
                                start_day + 3.5 + i * 7
                                for i in range(len(weekly_data))
                            ]
                            axis.scatter(tw,
                                         weekly_data,
                                         color=pop.color,
                                         marker='*',
                                         s=100,
                                         zorder=1)

        title = 'Daily'
        if region_data is not None:
            title += ' - ' + region
        if region == 'Simulation':
            title += ' - Simulation (' + str(self.get_seed_value()) + ')'
        axis.set_title(title)
        axis.legend()
        axis.set_yscale(y_axis_type)
        axis.set_xlim(left=start_day, right=self.n_days_widget.value)
        if y_axis_type == 'log':
            axis.set_ylim(bottom=max(y_min, 3))
        else:
            axis.set_ylim(bottom=y_min)
        if (y_max > 0.):
            axis.set_ylim(top=y_max)

# the t0 information needs to be propagated correctly before enabling this widget:

    t0_widget = widgets.DatePicker(description='t_0:',
                                   value=date(2020, 3, 1),
                                   tooltip='Defines day 0 on plots',
                                   disabled=False)

    # Look into this later:
    #    time_step_widget = widgets.BoundedFloatText(
    #        value=1., min=0.02, max=2.0, step=0.05, description='time_step:',
    #        tooltip='length of each step in the calculation: disabled for now', disabled=True)

    plot_1 = widgets.Dropdown(
        options=[
            'linear total', 'log total', 'residual total', 'linear daily',
            'log daily'
        ],
        value='linear total',
        description='Plot #1:',
        tooltip='Plot on left if the second plot is not None')

    plot_2 = widgets.Dropdown(options=[
        'linear total', 'log total', 'residual total', 'linear daily',
        'log daily'
    ],
                              value='log total',
                              description='Plot #2:',
                              tooltip='Plot on the right')

    y_max_1 = widgets.BoundedFloatText(
        value=0.,
        min=0.,
        max=1.E8,
        step=100.,
        description='y_max #1:',
        tooltip='maximum of vertical axis for Plot #1. (0 -> autoscale)',
        disabled=False)

    y_min_1 = widgets.BoundedFloatText(
        value=0.,
        min=0.,
        max=1.E8,
        step=100.,
        description='y_min #1:',
        tooltip='minimum of vertical axis for Plot #1. (0 -> autoscale)',
        disabled=False)

    y_max_2 = widgets.BoundedFloatText(
        value=0.,
        min=0.,
        max=1.E8,
        step=100.,
        description='y_max #2:',
        tooltip='maximum of vertical axis for Plot #2. (0 -> autoscale)',
        disabled=False)

    y_min_2 = widgets.BoundedFloatText(
        value=0.,
        min=0.,
        max=1.E8,
        step=100.,
        description='y_min #2:',
        tooltip='minimum of vertical axis for Plot #2. (0 -> autoscale)',
        disabled=False)

    output = widgets.Output()
    plot_output = widgets.Output()
    #plot_output.layout.height = '50px'

    plot_button = widgets.Button(description='  Plot',
                                 button_style='',
                                 tooltip='Run model and plot result',
                                 icon='check')
    reset_button = widgets.Button(
        description='  Reset',
        button_style='warning',
        tooltip='Undo all changes to parameters since loading model',
        icon='warning')

    def make_plot(b):
        output.clear_output(True)
        plot_output.clear_output(True)

        if self.region_dropdown.value == 'Simulation':
            self.sim_model = copy.deepcopy(self.model)
            # produce a new seed if the text_widget value is zero
            seed = self.get_seed_value(new_seed=True)
            np.random.seed(seed)
            self.sim_model.reset()
            self.sim_model.generate_data(self.n_days_widget.value,
                                         data_start=data_start_widget.value)
            # since there could be new simulation data:
            self.new_region_opened()

        #self.model.parameters[self.param_dropdown.value].set_value(self.val_text_widget.value)
        #run model with current parameters
        before = time.process_time()
        self.model.reset()
        self.model.evolve_expectations(self.n_days_widget.value)
        after = time.process_time()
        run_time = int(round((after - before) * 1000.))
        with output:
            dash = '-' * 33
            print('Run time = ' + str(run_time) + ' ms')
            print()
            print('Max. expectations in the period:')
            print()
            print('population              max   day')
            print(dash)
            for pop_name in self.model.populations:
                pop = self.model.populations[pop_name]
                if not pop.hidden:
                    print('{:<22s}{:>5d}{:>5d}'\
                          .format(pop_name,int(round(np.max(pop.history))),
                                  int(round(np.argmax(pop.history)))))
        with plot_output:

            fig, axes = plt.subplots(1, 2, figsize=(16, 7))

            axis = axes[0]
            y_axis_type = 'linear'
            if 'linear' not in plot_1.value:
                y_axis_type = 'log'
            y_max = y_max_1.value
            y_min = y_min_1.value
            if 'total' in plot_1.value:
                if 'residual' in plot_1.value:
                    plot_residual(self, axis, y_max)
                else:
                    plot_total(self, axis, y_axis_type, y_max, y_min)
            else:
                plot_daily(self, axis, y_axis_type, y_max, y_min)
            plot_improvements(axis)

            axis = axes[1]
            y_axis_type = 'linear'
            if 'linear' not in plot_2.value:
                y_axis_type = 'log'
            y_max = y_max_2.value
            y_min = y_min_2.value
            if 'total' in plot_2.value:
                if 'residual' in plot_2.value:
                    plot_residual(self, axis, y_max)
                else:
                    plot_total(self, axis, y_axis_type, y_max, y_min)
            else:
                plot_daily(self, axis, y_axis_type, y_max, y_min)
            plot_improvements(axis)

            self.last_plot = plt.gcf()
            plt.show()

    def plot_improvements(axis):
        t0text = date(2020, 3, 1).strftime("%b %d")
        axis.set_xlabel('days since ' + t0text,
                        horizontalalignment='right',
                        position=(1., -0.1))
        axis.set_ylabel('Number of people')

        pypm_props = dict(boxstyle='round', facecolor='blue', alpha=0.1)
        axis.text(0.01,
                  1.02,
                  'pyPM.ca',
                  transform=axis.transAxes,
                  fontsize=10,
                  verticalalignment='bottom',
                  bbox=pypm_props)

        start_day = (t0_widget.value - date(2020, 3, 1)).days

        # indicate times of transitions
        x_transform = transforms.blended_transform_factory(
            axis.transData, axis.transAxes)
        trans_list, trans_enabled = get_transitions_lists(self)
        i = 0
        n_mod = 0
        # multiple bands if multiple parameters to be changed
        prefix = 8
        tran_dict = {}
        for tran_name in trans_enabled:
            tran = self.model.transitions[tran_name]
            if hasattr(tran, 'parameter_after'):
                if tran_name[0:prefix] not in tran_dict:
                    tran_dict[tran_name[0:prefix]] = {
                        'y_min': 0.,
                        'y_max': 1.,
                        'n_mod': 0,
                        'last_mod': 0
                    }

        n_bands = len(tran_dict)
        if n_bands > 1.:
            d_band = 1. / n_bands
            low = 0.
            for key in tran_dict:
                tran_dict[key]['y_min'] = low
                tran_dict[key]['y_max'] = low + d_band
                low += d_band

        for tran_name in trans_enabled:
            tran = self.model.transitions[tran_name]
            if hasattr(tran, 'parameter_after'):
                # a modifier changes a parameter - use a color band to distinguish regions
                tran_dict[tran_name[0:prefix]]['n_mod'] += 1
                n_mod = tran_dict[tran_name[0:prefix]]['n_mod']
                last_mod = tran_dict[tran_name[0:prefix]]['last_mod']
                y_min = tran_dict[tran_name[0:prefix]]['y_min']
                y_max = tran_dict[tran_name[0:prefix]]['y_max']
                axis.axvspan(last_mod,
                             tran.trigger_step,
                             facecolor='papayawhip',
                             edgecolor='tan',
                             alpha=0.5,
                             zorder=-n_mod,
                             ymin=y_min,
                             ymax=y_max)
                tran_dict[tran_name[0:prefix]]['last_mod'] = tran.trigger_step
            else:
                # an injector adds population - use an circle to show times (delayed by a week?)
                i += 1
                x_text = 'X' + str(i)
                x_props = dict(boxstyle='circle', facecolor='red', alpha=0.3)
                # a hack to put it in the right place (since a 1 week delay - need to get 7 from somewhere)
                delay = 7. / self.model.get_time_step()
                if tran.trigger_step + delay > start_day and tran.trigger_step + delay < self.n_days_widget.value:
                    axis.text(tran.trigger_step + delay,
                              -0.1,
                              x_text,
                              transform=x_transform,
                              fontsize=10,
                              verticalalignment='top',
                              horizontalalignment='center',
                              bbox=x_props)

    def reset_parameters(b):
        output.clear_output(True)
        self.model.reset()
        for par_name in self.model.parameters:
            par = self.model.parameters[par_name]
            par.reset()
        par_down = self.param_dropdown
        if par_down.value in self.model.parameters:
            reset_value = self.model.parameters[par_down.value].get_value()
            self.val_text_widget.value = reset_value
        with output:
            print('All parameters reset')
            print('to their initial values!')

    plot_button.on_click(make_plot)
    reset_button.on_click(reset_parameters)

    pars = get_par_list(self)
    self.param_dropdown = widgets.Dropdown(options=pars,
                                           description='Parameter:',
                                           disabled=False)

    par = self.model.parameters[pars[0]]
    #Bug in BoundedFloatText - regularly incorrect read back
    #val_text = widgets.BoundedFloatText(min=par.get_min(), max=par.get_max(), value = par.get_value())

    #similar bug in the slide
    #val_slide = widgets.FloatSlider(min=par.get_min(), max=par.get_max(), value = par.get_value(),
    #        continuous_update=False, orientation='horizontal', readout=True, readout_format='.3f')
    self.val_text_widget = widgets.FloatText(value=par.get_value(),
                                             description='Value:',
                                             continuous_update=False)

    #widgets.link((val_slide, 'value'), (val_text, 'value'))

    def dropdown_eventhandler(change):
        # update list of visible parameters in case it has changed
        pars = get_par_list(self)
        self.param_dropdown.options = pars
        par = self.model.parameters[self.param_dropdown.value]
        self.val_text_widget.value = par.get_value()

    def val_change_eventhandler(change):
        if self.param_dropdown.value in self.model.parameters:
            par = self.model.parameters[self.param_dropdown.value]
            if par.parameter_type == 'float':
                par.set_value(change['new'])
            else:
                par.set_value(int(change['new']))

            b = []
            make_plot(b)

    self.param_dropdown.observe(dropdown_eventhandler, names='value')
    self.val_text_widget.observe(val_change_eventhandler, names='value')

    trans_list, trans_enabled = get_transitions_lists(self)

    self.transitions_chooser = widgets.SelectMultiple(
        options=trans_list,
        value=trans_enabled,
        rows=1,
        description='Transitions:')

    def tran_choo_eventhandler(change):
        output.clear_output(True)
        trans_enabled = self.transitions_chooser.value
        with output:
            print('Changes made to transition status:')
            for tran_name in self.model.transitions:
                tran = self.model.transitions[tran_name]
                prev_enabled = tran.enabled
                was_enabled = ' was disabled'
                if tran.enabled:
                    was_enabled = ' was enabled'
                # set the bit in the model:
                tran.enabled = tran_name in trans_enabled
                now_enabled = 'and is now disabled.'
                if tran.enabled:
                    now_enabled = 'and is now enabled.'
                if prev_enabled != tran.enabled:
                    print(tran_name + was_enabled)
                    print(now_enabled)

    self.transitions_chooser.observe(tran_choo_eventhandler, names='value')

    def region_dropdown_eventhandler(change):
        output.clear_output(True)
        region_selected = self.region_dropdown.value
        if self.data_description is not None:
            self.data_description['selected_region'] = region_selected
        if region_selected == 'Simulation':
            self.seed_text_widget.disabled = False
            data_start_widget.disabled = False
        else:
            self.seed_text_widget.disabled = True
            data_start_widget.disabled = True
        with output:
            print('Changed data region to: ' + region_selected)
        self.new_region_opened()

    self.region_dropdown.observe(region_dropdown_eventhandler, names='value')

    self.seed_text_widget = widgets.IntText(
        value=0,
        description='Seed:',
        disabled=True,
        tooltip='To use a fixed seed for simulation, enter an integer',
        continuous_update=False)

    data_start_widget = widgets.IntText(
        value=0,
        description='Data start:',
        disabled=True,
        tooltip='Enter step for simulation to start',
        continuous_update=False)

    def save_model_file(b):
        output.clear_output(True)
        mfn = model_filename.value
        if len(mfn) > 0:
            if '.pypm' not in mfn:
                mfn = mfn + '.pypm'
            #filename = self.model_folder_text_widget.value+'/'+mfn
            filename = mfn
            mfolder = model_folder.value
            if mfolder not in ['', '.']:
                #    filename = self.model_folder_text_widget.value+\
                #        '/'+mfolder+'/'+mfn
                filename = mfolder + '/' + mfn
            self.model.name = self.model_name.value
            self.model.description = self.model_description.value
            self.model.save_file(filename)

            with output:
                print('Success. Model saved to:')
                print(filename)
                model_filename.value = ''

        else:
            with output:
                print(' Model not saved: Missing filename.')

    def save_plot_file(b):
        # use the same widgets for filename as model
        output.clear_output(True)
        with output:
            mfn = model_filename.value
            if len(mfn) > 0:
                #plot_filename = self.model_folder_text_widget.value+'/'+mfn
                plot_filename = mfn
                mfolder = model_folder.value
                if mfolder not in ['', '.']:
                    #plot_filename = self.model_folder_text_widget.value+\
                    #    '/'+mfolder+'/'+mfn
                    plot_filename = mfolder + '/' + mfn
                self.last_plot.savefig(plot_filename)
                print('The plot was saved to:')
                print(plot_filename)
                model_filename.value = ''
            else:
                print('No filename provided.')
                print('Please try again.')

    hspace = widgets.HTML(value="&nbsp;" * 12,
                          placeholder='Some HTML',
                          description='')

    model_id = widgets.VBox([self.model_name, self.model_description])

    header_save_hspace = widgets.HTML(value="&nbsp;" * 16,
                                      placeholder='Some HTML',
                                      description='')

    model_folder = widgets.Text(value='.',
                                placeholder='relative to current model folder',
                                description='Folder:')

    model_filename = widgets.Text(value='',
                                  tooltip='name',
                                  placeholder='filename',
                                  description='Filename:')

    model_save_button = widgets.Button(
        description='  Save model',
        button_style='',
        tooltip='Save model as currently defined to the specified file',
        icon='file')

    plot_save_button = widgets.Button(
        description='  Save plot',
        button_style='',
        tooltip='Save plot to the specified file',
        icon='image')

    model_save = widgets.VBox([
        widgets.HBox([model_save_button, plot_save_button]), model_folder,
        model_filename
    ])

    #model_upload = widgets.FileUpload(accept='.pypm',multiple=False)
    #def model_upload_eventhandler(change):
    #    filename = list(model_upload.value.keys())[0]
    #    my_pickle = model_upload.value[filename]['content']
    #    self.open_model(filename, my_pickle)

    #model_upload.observe(model_upload_eventhandler, names='value')

    header_html = widgets.VBox([
        widgets.HTML(
            value=
            "<h1><a href:='https://www.pypm.ca'>pyPM.ca</a></h1><p style='font-size: 26px;'>explore</p>",
            placeholder='',
            description='')
    ])

    header_hbox = widgets.HBox(
        [header_html, hspace, model_id, header_save_hspace, model_save])

    model_save_button.on_click(save_model_file)
    plot_save_button.on_click(save_plot_file)

    left_box = widgets.VBox([
        t0_widget, self.n_days_widget, plot_1, plot_2, y_max_1, y_min_1,
        y_max_2, y_min_2
    ])
    right_box = widgets.VBox([
        widgets.HBox([plot_button, reset_button]), self.param_dropdown,
        self.val_text_widget, self.transitions_chooser, self.region_dropdown,
        self.seed_text_widget, data_start_widget
    ])

    return AppLayout(header=header_hbox,
                     left_sidebar=left_box,
                     center=output,
                     right_sidebar=right_box,
                     footer=plot_output,
                     pane_widths=[2, 2, 2],
                     pane_heights=[1, 2, '460px'])
コード例 #16
0
x = lin['campaign_id']
y = lin['campaign_count']

lines = plt.plot(x,y)

def update_lines(change):
    plt.title('Plotting of linear graph'.format(change.new))
    lines[0].set_data(x, y)
    fig.canvas.draw()
    fig.canvas.flush_events()

slider.observe(update_lines, names='value')

AppLayout(
    center=fig.canvas,
    footer=slider,
    pane_heights=[0, 6, 1]
)


# In[ ]:





# In[31]:


#df6.head(5)
#df6 = df6.groupby[df['jid'],df['campaign']]
コード例 #17
0
def draw_roaming_ui():
    global iter_slider, reset_button, color_it_button, juliabrot_button, canvases
    global drawing, uly_select, ulx_select, color_list, picker1, picker2, bump_ud_slider, hue_slider, sat_slider, val_slider
    global lry_select, lrx_select, color_it, modulo_slider, picker3, bump_lr_slider, zoom_slider, save_button

    # This establishes the size of the preview gui
    drawing = False
    color_it = True
    uly_select = 0
    ulx_select = 0
    lry_select = jgrid.settings.sizeY
    lrx_select = jgrid.settings.sizeX
    canvases = MultiCanvas(3,
                           width=jgrid.settings.sizeX * 2.5,
                           height=jgrid.settings.sizeY + 75)
    canvases[drawing_layer].font = '25px serif'
    canvases[drawing_layer].fill_style = '#aaaaaa'
    canvases[drawing_layer].line_width = 3
    canvases[interaction_layer].font = '35px serif'
    canvases[interaction_layer].fill_style = '#eee800'
    canvases[interaction_layer].stroke_style = '#ffffff'
    canvases[interaction_layer].line_width = 3
    iter_slider = FloatLogSlider(description='Iterations:',
                                 base=10,
                                 value=jgrid.settings.max_iterations,
                                 min=1,
                                 max=7,
                                 step=.01,
                                 continuous_update=False)
    iter_slider.observe(handler=iter_slider_handler, names='value')
    max_lr_bump = jgrid.settings.sizeX
    max_ud_bump = jgrid.settings.sizeY
    bump_ud_slider = IntSlider(description='Bump UD pix:',
                               value=1,
                               min=0,
                               max=max_ud_bump,
                               step=1,
                               continuous_update=False)
    bump_lr_slider = IntSlider(description='Bump LR pix:',
                               value=1,
                               min=0,
                               max=max_lr_bump,
                               step=1,
                               continuous_update=False)
    zoom_slider = FloatSlider(description='Zoom:',
                              value=2.0,
                              min=0.0,
                              max=1000.0,
                              step=.001,
                              continuous_update=False)
    #zoom_slider.observe(handler=zoom_button_handler, names='value')
    hue_slider = FloatSlider(description='Hue :',
                             value=jgrid.settings.hue,
                             min=0.0,
                             max=1.0,
                             step=.001,
                             continuous_update=False)
    sat_slider = FloatSlider(description='Sat:',
                             value=jgrid.settings.sat,
                             min=0.0,
                             max=1.0,
                             step=.01,
                             continuous_update=False)
    val_slider = FloatSlider(description='Val:',
                             value=jgrid.settings.val,
                             min=0.0,
                             max=1.0,
                             step=.02,
                             continuous_update=False)
    hue_slider.observe(handler=hue_slider_handler, names='value')
    sat_slider.observe(handler=sat_slider_handler, names='value')
    val_slider.observe(handler=val_slider_handler, names='value')
    modulo_slider = IntSlider(description='Modulo:',
                              value=jgrid.settings.modulo,
                              min=1,
                              max=1000000,
                              step=1,
                              continuous_update=False)
    modulo_slider.observe(handler=modulo_slider_handler, names='value')
    canvases[interaction_layer].on_mouse_down(on_mouse_down)
    canvases[interaction_layer].on_mouse_move(on_mouse_move)
    reset_button = Button(description='Zoom',
                          disabled=False,
                          button_style='',
                          tooltip='Click to use zoom slider setting for zoom',
                          icon='')
    reset_button.on_click(zoom_button_handler)
    save_button = Button(description='Save',
                         disabled=False,
                         button_style='',
                         tooltip='Click to save as JSON settings file',
                         icon='')
    save_button.on_click(save_button_handler)
    color_it_button = Button(description='Color/BW',
                             disabled=False,
                             button_style='',
                             tooltip='Click for BW or Color',
                             icon='')
    color_it_button.on_click(color_button_handler)
    juliabrot_button = Button(description='JM Mode',
                              disabled=False,
                              button_style='',
                              tooltip='Click for Julia or Mandelbrot',
                              icon='')
    juliabrot_button.on_click(juliabrot_button_handler)
    undo_button = Button(description='Undo',
                         disabled=False,
                         button_style='',
                         tooltip='Click to revert to last view',
                         icon='')
    undo_button.on_click(undo_button_handler)
    bleft_button = Button(description='Bump L',
                          disabled=False,
                          button_style='',
                          tooltip='Click to nudge left num bump LR pixels',
                          icon='')
    bleft_button.on_click(bleft_button_handler)
    bright_button = Button(description='Bump R',
                           disabled=False,
                           button_style='',
                           tooltip='Click to nudge right num bump LR pixels',
                           icon='')
    bright_button.on_click(bright_button_handler)
    bup_button = Button(description='Bump U',
                        disabled=False,
                        button_style='',
                        tooltip='Click to nudge up num bump UD pixels',
                        icon='')
    bup_button.on_click(bup_button_handler)
    bdown_button = Button(description='Bump D',
                          disabled=False,
                          button_style='',
                          tooltip='Click to nudge down bump UD pixels',
                          icon='')
    bdown_button.on_click(bdown_button_handler)
    picker1 = ColorPicker(description='M Color:', value=jgrid.settings.m_color)
    #picker2 = ColorPicker(description='Color 1:', value='#fff800')
    #picker3 = ColorPicker(description='Color 2:', value='#fff800')
    picker1.observe(color_picker1_handler, names='value')
    #picker2.observe(color_picker2_handler, names='value')
    #picker3.observe(color_picker3_handler, names='value')
    color_list = Dropdown(disabled=False,
                          options=[('Rainbow', 1), ('Classic', 2), ('Log', 3),
                                   ('RGB Max Iter', 4), ('Rainbow 2', 5)],
                          value=jgrid.settings.color_mode,
                          description='Color Mode:',
                          tooltip='Select built-in coloring options')
    color_list.observe(color_select_handler, names='value')
    draw_fractal(canvases, jgrid.tile_list)
    display_info(canvases, jgrid)
    return AppLayout(center=canvases,
                     header=HBox((iter_slider, bump_ud_slider, bump_lr_slider,
                                  zoom_slider)),
                     right_sidebar=VBox(
                         (picker1, color_list, hue_slider, sat_slider,
                          val_slider, modulo_slider)),
                     footer=HBox(
                         (bleft_button, bright_button, bup_button,
                          bdown_button, color_it_button, juliabrot_button,
                          reset_button, undo_button, save_button)))
コード例 #18
0
m.layout.height = 'auto'
fig.layout.width = 'auto'
fig.layout.height = 'auto'

# In[30]:

out = HTML(value='', layout=Layout(width='auto', height='auto'))

# In[31]:

AppLayout(center=m,
          header=header,
          left_sidebar=VBox([
              Label("Basemap:"), basemap_selector,
              Label("Overlay:"), heatmap_selector
          ]),
          right_sidebar=fig,
          footer=out,
          pane_widths=['80px', 1, 1],
          pane_heights=['80px', 4, 1],
          height='600px',
          grid_gap="30px")

# In[11]:

row = []

# In[12]:

X, Y = np.mgrid[-90:90:10j, -180:180:20j]

# In[13]: