コード例 #1
0
    def __init__(self,
                 frame,
                 canvas=None,
                 x=0,
                 y=0,
                 w=None,
                 h=None,
                 type_=EyeType.UNDEFINED,
                 padding=0):
        x += padding
        y += padding
        w = (w if w else frame.shape[1]) - padding * 2
        h = (h if h else frame.shape[0]) - padding * 2

        self.x = x
        self.y = y
        self.w = w
        self.h = h
        self.coords = (x, y, w, h)
        self.centroid = (x + w / 2, y + h / 2)

        self.type = type_

        self.frame = np.copy(frame[y:y + h, x:x + w])
        self.gray = cv2.cvtColor(frame[y:y + h, x:x + w], cv2.COLOR_BGR2GRAY)
        canvas = canvas if canvas is not None else np.copy(frame)
        self.canvas = canvas[y:y + h, x:x + w]

        self.moments = None
        self.momentVectors = None

        self.iris = Iris(self)
コード例 #2
0
async def post_auth_hook(authenticator, handler, authentication):
    iris = Iris()
    userdata = await iris.query_user(authentication["name"])
    if authentication["auth_state"] is None:
        authentication["auth_state"] = {}
    authentication["auth_state"]["userdata"] = userdata
    return authentication
コード例 #3
0
def test_iris_scikit_learn_comparison():
    """

    This test compares the created Naive Bayes classifier implementation
    with scikit-learn library using iris.csv dataset.

    """

    print('\n===============================')
    print('=== PROJECT IMPLEMENTATION ====')
    print('===============================')

    seed(1)

    iris = Iris()
    iris.data_preprocessing()
    project_efficiency_percent = iris.calculate_accuracy(n_folds=2)

    print('\n===============================')
    print('======== SCIKIT-LEARN =========')
    print('===============================')

    X, y = load_iris(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        random_state=0)
    gnb = GaussianNB()
    y_pred = gnb.fit(X_train, y_train).predict(X_test)

    num_of_points = 75
    mislabeled_points = (y_test != y_pred).sum()
    sklearn_efficiency_percent = (
        (num_of_points - mislabeled_points) / num_of_points) * 100

    print(
        f'\n\nCalculating the scikit-learn algorithm accuracy with iris.csv dataset...'
    )
    print(
        f'\nNumber of mislabeled points out of a total {num_of_points} points : {mislabeled_points}'
    )
    print(f'\nAlgorithm efficiency: {round(sklearn_efficiency_percent, 5)} %')

    assert (project_efficiency_percent - sklearn_efficiency_percent) < 10
コード例 #4
0
async def task_handler(data:Iris, background_tasks: BackgroundTasks):
    data = data.dict()
    print("in the prediction")
    sepal_length = data['sepal_length']
    sepal_width = data['sepal_width']
    petal_length = data['petal_length']
    petal_width = data['petal_width']
    new_task = Job()
    jobs[new_task.uid] = new_task
    background_tasks.add_task(start_modelling_task, new_task.uid, [sepal_length, sepal_width, petal_length, petal_width])
    return new_task
コード例 #5
0
    def __init__(self, landmarks, frame, side):
        self.side = side
        self.frame = frame
        self.scale = 1
        self.eye_points = self._extract_eye_points(landmarks)
        self.bbox = cv2.boundingRect(self.eye_points)
        self.eye_region, self.eye_origin = self._extract_eye_region(
            frame_padding=2)

        self.mask = self._make_mask()
        left, right = self._generate_masked_gradient()
        self.iris = Iris(left, right, self.eye_region, self.mask)
        self.eye_corner, self.eye_width = self._extract_eye_corners()
        self.center = np.array(self._calculate_center())
        self.relative_center = self._calculate_relative_center()
コード例 #6
0
ファイル: main.py プロジェクト: wdon021/fastapi_heroku
async def predict(
    data: Iris
):  # Declare it as a parameter after Iris data model been created
    # convert Iris object into dictionary
    data = data.dict()
    print("in the prediction")
    # There are different way of input data
    # another way is to input as csv file using: fastapi.UploadFile
    sepal_length = data['sepal_length']
    sepal_width = data['sepal_width']
    petal_length = data['petal_length']
    petal_width = data['petal_width']
    prediction = await model(
        [sepal_length, sepal_width, petal_length, petal_width])
    print("prediction is done")
    # can control the return by specify the response_model inside @app.post() decorator
    return {"prediction": str(prediction)}
コード例 #7
0
from __future__ import absolute_import, division, print_function

import os
import matplotlib.pyplot as plt

import tensorflow as tf
import tensorflow.contrib.eager as tfe

tf.enable_eager_execution()

from iris import Iris

iris = Iris()
model = iris.model
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
checkpoint_dir = './iris_model'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
root = tfe.Checkpoint(optimizer=optimizer,
                      model=model,
                      optimizer_step=tf.train.get_or_create_global_step())

root.restore(tf.train.latest_checkpoint(checkpoint_dir))

iris.test()
コード例 #8
0
ファイル: main.py プロジェクト: RichardBoulet/FastAPI_Test
from iris import Iris
from fastapi import FastAPI, Query
from typing import List
from pydantic import BaseModel
import json

app = FastAPI(debug=True)

iris = Iris()


@app.get('/')
def proper_root():

    return {'ERROR': 'Use GET /predict instead of root route!'}


@app.get('/predict/')
def predict(features=Query(None)):

    features = json.loads(features)

    prediction = iris.classify(features)

    return {'results': prediction}
コード例 #9
0
from __future__ import absolute_import, division, print_function

import os
import matplotlib.pyplot as plt

import tensorflow as tf
import tensorflow.contrib.eager as tfe

tf.enable_eager_execution()

from iris import Iris

iris = Iris()
model = iris.model
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
checkpoint_dir = './iris_model'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
root = tfe.Checkpoint(optimizer=optimizer,
                      model=model,
                      optimizer_step=tf.train.get_or_create_global_step())

root.restore(tf.train.latest_checkpoint(checkpoint_dir))

data_array = []
while True:
    data = (input("Please enter features to predict (type 'exit' to stop):\n"))
    if data == 'exit':
        break
    data = data.split(",")
    data_array.append([float(i) for i in data])
if len(data_array) > 0:
コード例 #10
0
from iris import Iris, IrisValue
from collections import defaultdict
import fileinput

iris = Iris()


# here we simply add two integers, result will be appended to
# result list in enviornment context
@iris.register("add {n1:Int} and {n2:Int}")
def add(n1, n2):
    return n1 + n2


# so here we add a new named variable to enviornment context that
# holds the result
@iris.register("add {n1:Int} and {n2:Int} to var")
def add_named(n1, n2):
    return IrisValue(n1 + n2, name="n1_and_n2")


# demonstrate lookup of variable from environment
@iris.register("sum {lst:List}")
def sum1(lst):
    return sum(lst)


@iris.register("count {lst:List}")
def count1(lst):
    counts = defaultdict(int)
    for x in lst:
コード例 #11
0
from iris import Iris

app = Iris()

app.static('.')

app.listen()
コード例 #12
0
from __future__ import absolute_import, division, print_function

import os
import matplotlib.pyplot as plt

import tensorflow as tf
import tensorflow.contrib.eager as tfe

tf.enable_eager_execution()

from iris import Iris
global_step = tf.train.get_or_create_global_step()
summary_writer = tf.contrib.summary.create_file_writer(
    'iris_model', flush_millis=10000)
with summary_writer.as_default(), tf.contrib.summary.always_record_summaries():
  iris = Iris()
  trained_iris = iris.train()
  iris.graph(trained_iris, 'test_graphs')
  model = iris.model
  optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
  checkpoint_dir = './iris_model'
  checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
  root = tfe.Checkpoint(optimizer=optimizer,
                        model=model,
                        optimizer_step=tf.train.get_or_create_global_step())
  root.save(file_prefix=checkpoint_prefix)

  tf.contrib.summary.scalar("loss", my_loss)
コード例 #13
0
ファイル: main.py プロジェクト: badboyd/scripts
def main():
    iris = Iris("https://cdn.chotot.com", "73757368690a", "626164626f79640a")
    url = iris.gen_url("2664732968888824287.jpg", "raw")
    print(url)
    unirest.get(url, callback=prefetch_images_callback)
コード例 #14
0
ファイル: test_iris.py プロジェクト: chiakimz/FinalProjectML
 def setUp(self):
     self.iris = Iris()
コード例 #15
0
ファイル: test_iris.py プロジェクト: chiakimz/FinalProjectML
class IrisTest(tf.test.TestCase):
    def setUp(self):
        self.iris = Iris()

    def test_download_function(self):
        filepath = self.iris.download_data()[-17:]
        self.assertAllEqual(filepath, 'iris_training.csv')

    def test_download_test_data_function(self):
        filepath = self.iris.download_test_data()[-13:]
        self.assertAllEqual(filepath, 'iris_test.csv')

    def test_format_data_features_and_label_are_tensors(self):
        features, label, dataset = self.iris.format_data(
            self.iris.download_data())
        self.assertTrue(isinstance(features[0], tf.Tensor))
        self.assertTrue(isinstance(label[0], tf.Tensor))

    def test_test_function_returns_accuracy(self):
        test_accuracy_result = self.iris.test()
        self.assertAllEqual(test_accuracy_result[-1:], '%')

    def test_train_function_adds_to_loss_and_accuracy_array(self):
        train_loss_results, train_accuracy_results = self.iris.train()
        self.assertAllEqual(len(train_loss_results), 201)
        self.assertAllEqual(len(train_accuracy_results), 201)

    def test_predict_function(self):
        self.iris.train()
        possible_answers = [
            'Example 1 prediction: Iris setosa',
            'Example 1 prediction: Iris versicolor',
            'Example 1 prediction: Iris virginica'
        ]
        predictions = self.iris.predict([[5.1, 3.3, 1.7, 0.5]])
        self.assertTrue(predictions in possible_answers)

    def test_graph_creates_file(self):
        self.iris.graph([[3, 2, 4, 5], [2, 7, 1, 0]], 'test_graphs')
        my_file = Path('./test_graphs/figure.png')
        self.assertTrue(my_file.is_file())
コード例 #16
0
class Eye(object):
    """Short summary.

    Args:
        x (int): x coordinate of the eye (top-left corner) in the face frame.
        y (int): y coordinate of the eye (top-left corner) in the face frame.
        w (int): width of the eye in the face frame.
        h (int): height of the eye in the face frame.
        frame (np.array): Original face frame onto which the eye has been identified
        canvas (np.array): Face frame we can draw on
        type_ (EyeType): Either left or right or undefined yet

    Attributes:
        coords (int, int, int, int): (x, y, w, h)
        centroid (float, float): Center of the eye
        gray (np.array): Gray-scale version of the eye frame
        moments (np.array): Moments of our region of interest
        momentVectors (np.array): Vector moments of our region of interest
        x
        y
        w
        h
        frame
        canvas
        COLORS (dict): Color associated with each EyeType
    """
    COLORS = {
        EyeType.UNDEFINED: (255, 255, 255),
        EyeType.LEFT: (0, 255, 255),
        EyeType.RIGHT: (0, 0, 255),
    }

    def __init__(self,
                 frame,
                 canvas=None,
                 x=0,
                 y=0,
                 w=None,
                 h=None,
                 type_=EyeType.UNDEFINED,
                 padding=0):
        x += padding
        y += padding
        w = (w if w else frame.shape[1]) - padding * 2
        h = (h if h else frame.shape[0]) - padding * 2

        self.x = x
        self.y = y
        self.w = w
        self.h = h
        self.coords = (x, y, w, h)
        self.centroid = (x + w / 2, y + h / 2)

        self.type = type_

        self.frame = np.copy(frame[y:y + h, x:x + w])
        self.gray = cv2.cvtColor(frame[y:y + h, x:x + w], cv2.COLOR_BGR2GRAY)
        canvas = canvas if canvas is not None else np.copy(frame)
        self.canvas = canvas[y:y + h, x:x + w]

        self.moments = None
        self.momentVectors = None

        self.iris = Iris(self)

    def distanceToPoint(self, point):
        """Computes the distance between the point and the eye centroid

        Args:
            point (np.array 2): 2d coordinates of the given point

        Returns:
            float: Distance to the eye centroid
        """
        return np.sum(np.power(point - np.array(list(self.centroid)), 2))

    def getLeft(self):
        return self.x

    def getRight(self):
        return self.x + self.w

    def getTop(self):
        return self.y

    def getBot(self):
        return self.y + self.h

    def getTopLeft(self):
        return (self.x, self.y)

    def getBotRight(self):
        return (self.x + self.w, self.y + self.h)

    def draw(self, face):
        """Draw a rectangle around the eye and indicates its side.

        Args:
            face (Face): Face on which canvas the eye info will be drawn
        """
        cv2.rectangle(face.canvas, self.getTopLeft(), self.getBotRight(),
                      self.COLORS[self.type], 2)
        cv2.putText(face.canvas, self.type.value,
                    (self.getLeft(), self.getBot() + 18),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, self.COLORS[self.type], 1)
        self.iris.draw(face)

    def computeMoments(self):
        """Computes the moments of this eye.

        Returns:
            np.array: Moments
        """
        self.moments = cv2.moments(self.gray)
        return self.moments

    def computeMomentVectors(self):
        """Evaluates the 7 moment invariants defined by Hu

        Returns:
            np.array: Ordered vector moments
        """
        self.computeMoments()
        mu = {}
        for key, value in self.moments.items():
            if 'nu' in key:
                mu[key.replace('nu', '')] = value

        mvs = [None] * 7
        mvs[0] = mu['02'] * mu['20']
        mvs[1] = (mu['02'] - mu['20'])**2 + 4 * mu['11']
        mvs[2] = (mu['30'] - 3 * mu['12'])**2 + (+3 * mu['21'] - mu['03'])**2
        mvs[3] = (mu['30'] + mu['12'])**2 + (mu['21'] + mu['03'])**2
        mvs[4] = (mu['30']-3*mu['12'])*(mu['30']+mu['12'])\
                *((mu['30']+mu['12'])**2-3*(mu['21']+mu['03'])**2)\
                +(3*mu['21']-mu['03'])*(mu['03']+mu['21'])\
                *(3*(mu['12']+mu['30'])**2-(mu['03']+mu['21'])**2)
        mvs[5] = (mu['02']-mu['20'])*((mu['30']+mu['12'])**2-(mu['21']+mu['03'])**2)\
                +4*(mu['30']+mu['12'])*(mu['21']+mu['03'])
        mvs[6] = (3*mu['21']-mu['03'])*(mu['30']+mu['12'])\
                *((mu['30']+mu['12'])**2-3*(mu['21']+mu['03'])**2)\
                -(mu['21']+mu['03'])*(mu['30']-3*mu['12'])\
                *(3*(mu['30']+mu['12'])**2-(mu['21']+mu['03'])**2)

        self.momentVectors = np.array(mvs)
        return self.momentVectors