コード例 #1
0
def visualize_beta():
    L = 10
    nn = pickle.load(open('nn5_final.p', 'rb'))
    #for w in nn.weights[:1] :
    #    with np.printoptions(precision=2, suppress=True) :
    #        print(w.reshape((-1,L)))
    #plt.imshow(nn.weights[0].reshape((L,-1)))
    #plt.show()

    N = 5000
    training_fraction = 0.4
    ising = Ising(L, N)
    #X, y  = ising.generateTrainingData1D()
    D, ry = ising.generateDesignMatrix1D()
    #y    /= L

    ols = LeastSquares(method='ols', backend='manual')
    ols.setLambda(0.1)
    ols.fit(D, ry)

    print(ising.states.shape)
    #W = nn.weights[0].reshape((-1,L))*nn.weights[1]
    W = ols.beta.reshape((-1, L))
    J = ising.J
    for i in range(10):
        row = ising.states[i, :]
        des = D[i, :]
        E = ry[i]
        print(row.shape)
        row = np.expand_dims(row, 1)
        print("s W s:", row.T @ W @ row)
        print("s (W+W')/2 s:", row.T @ (W + W.T) / 2 @ row)
        print("s J s:", row.T @ J @ row)
        #print("D w:  ", W.T @ des * nn.weights[1])
        #print("pred: ", nn.predict(np.expand_dims(des.T,1)))
        print("E:    ", E)
        print("")

    for i in range(N):
        row = ising.states[i, :]
        des = D[i, :]
        E = ry[i]
        atol = 1e-14
        rtol = 1e-14
        #assert np.allclose(row.T @ W @ row, row.T @ (W+W.T)/2 @ row, atol=atol, rtol=rtol)
        #assert np.allclose(row.T @ (W+W.T)/2 @ row, row.T @ J @ row, atol=atol, rtol=rtol)

    with np.printoptions(precision=2, suppress=True):
        for a in np.linalg.eig(W):
            print(a)

    with np.printoptions(precision=2, suppress=True):

        print("det=", np.linalg.det(W))
        print("cond=", np.linalg.cond(W))
        print("")
        print("J:\n:", J)
        print("W+W'/2\n", (W + W.T) / 2)
        print("J+J'/2\n", (J + J.T) / 2)
        print("Tr D:", np.sum(np.diag((W + W.T) / 2)))
コード例 #2
0
def visualize_unbalanced():
    L = 1000
    possible_E = len(np.arange(-L, L + 1, 4))
    N = 2 * possible_E
    print(N)
    plt.rc('text', usetex=True)
    ising = Ising(L, N)
    ising.generateTrainingData1D()
    #s = ising.states
    E = ising.E
    #M = np.sum(s,1)
    ind = np.argsort(E)
    #s = s[ind,:]
    E = E[ind] / L
    plt.plot(E, np.linspace(0, 1, len(E)), 'r-', label=r'Even sampling')

    ising = Ising(L, N)
    ising.generateStates1D()
    ising.computeEnergy1D()
    s_u = ising.states
    E_u = ising.E
    M_u = np.sum(s_u, 1)
    E_u = np.sort(E_u) / L
    #s_u = s[ind_u,:]
    #E_u = E[ind_u]
    plt.plot(E_u, np.linspace(0, 1, len(E)), 'b-', label=r'Naive sampling')
    plt.axis([-1, 1, 0, 1])
    plt.xlabel(r'Normalized energy, $E/L$', fontsize=10)
    plt.ylabel(r'Cumulative distribution, $P(E_i\ge E)$', fontsize=10)
    plt.legend(fontsize=10)
    plt.savefig(os.path.join(os.path.dirname(__file__), 'figures',
                             'visualize_sampling.png'),
                transparent=True,
                bbox_inches='tight')
    plt.show()
コード例 #3
0
ファイル: runsim.py プロジェクト: iambernie/olisms
def simulate():
    """
    Run several Ising model simulations with different temperatures.
    Store them in 1 hdf5 file.

    """
    temperatures = numpy.linspace(args.tmin, args.tmax, args.steps)

    with HDF5Handler(args.filename) as handler:
        for index, T in enumerate(temperatures):
            h5path = "/"+"sim_"+str(index).zfill(4)+"/"
            # h5path thus looks like:
            # "/sim_0000/", "/sim_0001/", etc.
            handler.prefix = h5path

            i = Ising(args.shape, args.sweeps, temperature=T, handler=handler,
                      aligned=args.aligned, mode=args.algorithm,
                      saveinterval=args.saveinterval, skip_n_steps=args.skip)

            if args.verbose:
                i.print_sim_parameters()

            widgets=drawwidget("  T = {}  {}/{} ".format(round(T,4), index+1,
                                                         len(temperatures)))
            pbar = pb.ProgressBar(widgets=widgets, maxval=args.sweeps).start()
            i.evolve(pbar)
            pbar.finish()

            handler.file.flush()
コード例 #4
0
def animate_ising(size, beta, frames):
    """ animate the ising model for specific conditions """
    ising = Ising(size, beta)
    fig = plt.figure(figsize=(5, 5))
    ax = fig.add_subplot(1, 1, 1)

    def display():
        """ display funtion for animation """
        ax.axis('off')
        ax.pcolor(ising.data)

        return fig

    def animate(t):
        """ animate function for animation """
        ax.clear()
        print(t)

        ising.metropolis()
        fig = display()
        ax.set_title('beta= ' + str(beta) + ', t = ' + str(t))

        return fig

    ani = animation.FuncAnimation(fig, animate, save_count=frames)
    ani.save('ising' + str(beta) + '.GIF',
             writer='imagemagick',
             fps=1,
             dpi=300)
コード例 #5
0
def before_after(size, beta, file_name):
    """ simulate for size and beta """
    ising = Ising(size, beta)
    before = ising.data.copy()
    # do metropolis 200 times
    for _ in range(200):
        ising.metropolis()

    # draw
    fig, axes = plt.subplots(1, 2, figsize=(18, 8))
    ax1 = axes[0]
    ax2 = axes[1]
    ax1.pcolor(before)
    ax1.set_title("before")
    ax2.pcolor(ising.data)
    ax2.set_title("after")
    plt.savefig(file_name, dpi=300, bbox_inches='tight')
    plt.close()
コード例 #6
0
ファイル: mp_runsim.py プロジェクト: iambernie/olisms
def worker(tasks_queue, done_queue):
    """
    Pulls a task from the task queue and initiates the ising model
    simulation.

    Ising.evolve() is run within the context of HDF5Handler so a
    handler can be passed to Ising object. The HDF5Handler context
    block is run within the context of Pbar to track the progress
    of the simulation.
    """

    for task, hash_ in iter(tasks_queue.get, 'STOP'):
        process_id = int((mp.current_process().name)[-1]) #find nicer way
        writer = Writer((0, process_id), TERM)

        with Pbar(task, writer) as bar:
            with HDF5Handler(filename=ARGS.tempdir+'/'+hash_+'.hdf5') as h:
                time_start = time.time()
                isingsim = Ising(shape=task['shape'], sweeps=task['mcs'],
                                 temperature=task['temperature'],
                                 aligned=task['aligned'],
                                 algorithm=task['algorithm'], handler=h,
                                 saveinterval=task['saveinterval'],
                                 skip_n_steps=task['skip_n_steps'])
                isingsim.evolve(pbar=bar)
                runtime = round(time.time() - time_start, 2)


        subs = {'temp'     : task["temperature"],
                'shape'    : task['shape'],
                'algo'     : task['algorithm'],
                'aligned'  : task['aligned'],
                'mcs'      : task['mcs'],
                'runtime'  : runtime,
                'timestamp': time.strftime("%d %b %Y %H:%M:%S")
                }

        s = "T={temp:.3f}  {shape}  {algo}  {aligned}  {mcs} {runtime:.2f}  {timestamp} "
        job_report = s.format(**subs)

        logging.info(job_report)
        done_queue.put(job_report)
コード例 #7
0
ファイル: run_ising.py プロジェクト: jesterhui/ising_nn
import numpy as np
from ising import Ising

DATA_POINTS = 10000
SIZE = 8

for temp in np.linspace(1.0, 3.5, 26):
    data = np.zeros(shape=(DATA_POINTS, SIZE**2))
    R = Ising(temp, SIZE)
    R.run(32**3)
    print('T = {} equilibration done'.format(temp))
    for i in range(DATA_POINTS):
        R = Ising(temp, SIZE)
        R.run(32)
        data[i] = R.generate_data()
    np.save('data/train_temp_%g' % (temp), data)
    print('T = {} data collected'.format(temp))
コード例 #8
0
def test_ising() :
	ising = Ising()

	err = None
	try:
		s, E = ising.generateStates1D()
	except ValueError as e:
		# This should result in a value error, we catch it and ignore.
		err = e
	assert str(err) == "System size and/or number of states not specified."
	
	L = 5
	N = 10
	s, E = ising.generateStates1D(L,N)

	# Ensure the correct number of states are generated, and that they all
	# contain the correct number of spins.
	assert s.shape[0] == N
	assert s.shape[1] == L
	assert E.shape[0] == N

	# The energy can never be more than L or lower than -L.
	assert np.max(E) <= L
	assert np.min(E) >= -L

	N = 10
	L = 15
	ising.generateStates1D(L,N)
	states = np.ones(shape=(N,L))
	ising.states = states
	E = ising.computeEnergy1D()

	# All spins pointing in the same direction should yield E = -L
	assert np.all(E == np.ones(N) * (-L))

	# Flipping a single spin should give energy E = -L + 4, since 
	# two interactions which previously gave -1 energy contributions
	# now give +1.
	np.fill_diagonal(ising.states, -1)
	E = ising.computeEnergy1D()
	assert np.all(E == np.ones(N) * (-L+4))

	# Flipping another one *not* adjacent to the first flipped gives 
	# another +4 to the energy.
	np.fill_diagonal(ising.states[:,2:], -1)
	E = ising.computeEnergy1D()
	assert np.all(E == np.ones(N) * (-L+2*4))

	# Flipping one spin in between two flipped ones, i.e. 
	#
	#    -1 1 -1    -->    -1 -1 -1
	# 
	# gives -2 change in the energy.
	np.fill_diagonal(ising.states[:,1:], -1)
	E = ising.computeEnergy1D()
	assert np.all(E == np.ones(N) * (-L+2*4-4))

	L = 3
	N = 3
	ising = Ising(L,N)
	states = np.array([	[10, 200, 3000],
						[40, 500, 6000],
						[70, 800, 9000] ])
	ising.generateStates1D()
	ising.states = states 
	ising.computeEnergy1D()
	X, y = ising.generateDesignMatrix1D(L, N)
	
	# Make sure every combination of 10, 200, 3000 multiplied together
	# exists in the first row of X, every combination of 40, 500, 6000
	# is contained in the second row, etc.
	for row in range(3) :
		for i in states[row,:] :
			for j in states[row,:] :
				assert np.any(X[row,:] == i*j)
コード例 #9
0
ファイル: takamura.py プロジェクト: vikrampruthvi5/SentiLex
def takamura(a_germanet,
             a_N,
             a_cc_file,
             a_pos,
             a_neg,
             a_neut,
             a_plot=None,
             a_pos_re=NONMATCH_RE,
             a_neg_re=NONMATCH_RE):
    """Method for generating sentiment lexicons using Takamura's approach.

    @param a_germanet - GermaNet instance
    @param a_N - number of terms to extract
    @param a_cc_file - file containing coordinatively conjoined phrases
    @param a_pos - initial set of positive terms to be expanded
    @param a_neg - initial set of negative terms to be expanded
    @param a_neut - initial set of neutral terms to be expanded
    @param a_plot - name of file in which generated statics plots should be
                    saved (None if no plot should be generated)
    @param a_pos_re - regular expression for matching positive terms
    @param a_neg_re - regular expression for matching negative terms

    @return \c 0 on success, non-\c 0 otherwise

    """
    # estimate the number of terms to extract
    seed_set = a_pos | a_neg
    # create initial empty network
    ising = Ising()
    # populate network from GermaNet
    print("Adding GermaNet synsets...", end="", file=sys.stderr)
    _tkm_add_germanet(ising, a_germanet)
    print("done (Ising model has {:d} nodes)".format(ising.n_nodes),
          file=sys.stderr)
    # populate network from corpus
    print("Adding coordinate phrases from corpus...", end="", file=sys.stderr)
    _tkm_add_corpus(ising, a_cc_file)
    print("done (Ising model has {:d} nodes)".format(ising.n_nodes),
          file=sys.stderr)
    # reweight edges
    ising.reweight()
    # set fixed weights for words pertaining to the positive, negative, and
    # neutral set
    for ipos in a_pos:
        if ipos in ising:
            ising[ipos][FXD_WGHT_IDX] = 1.
        else:
            ising.add_node(ipos, 1.)
        ising[ipos][HAS_FXD_WGHT] = 1
    if a_pos_re != NONMATCH_RE:
        _annotate_re(a_pos_re, ising, 1)
    for ineg in a_neg:
        if ineg in ising:
            ising[ineg][FXD_WGHT_IDX] = -1.
        else:
            ising.add_node(ineg, -1.)
        ising[ineg][HAS_FXD_WGHT] = 1
    if a_pos_re != NONMATCH_RE:
        _annotate_re(a_neg_re, ising, -1.)
    for ineut in a_neut:
        if ineut in ising:
            ising[ineut][FXD_WGHT_IDX] = 0.
        else:
            ising.add_node(ineut, 0.)
        ising[ineut][HAS_FXD_WGHT] = 1
    ising.train(a_plot=a_plot)
    # nodes = [inode[ITEM_IDX]
    # for inode in sorted(ising.nodes, key = lambda x: x[WGHT_IDX])
    #              if inode[ITEM_IDX] not in seed_set]
    seed_set |= a_neut
    nodes = [
        inode for inode in sorted(
            ising.nodes, key=lambda x: abs(x[WGHT_IDX]), reverse=True)
        if inode[ITEM_IDX] not in seed_set
    ]
    seed_set.clear()
    # populate polarity sets and flush all terms to an external file
    i = 0
    if a_N < 0:
        a_N = len(nodes)

    # generate final set of polar terms
    max_w = max(inode[WGHT_IDX] for inode in nodes) + 1.
    min_w = max(inode[WGHT_IDX] for inode in nodes) - 1.
    # add all original seed terms
    ret = [(iterm, POSITIVE, max_w) for iterm in a_pos] + \
          [(iterm, NEGATIVE, min_w) for iterm in a_neg]
    # add remaining automatically derived terms
    for inode in nodes:
        if isnan(inode[WGHT_IDX]):
            print(inode[ITEM_IDX].encode(ENCODING),
                  "\t",
                  inode[WGHT_IDX],
                  file=sys.stderr)
        else:
            if i < a_N:
                if inode[WGHT_IDX] > 0:
                    ret.append((inode[ITEM_IDX], POSITIVE, inode[WGHT_IDX]))
                elif inode[WGHT_IDX] < 0:
                    ret.append((inode[ITEM_IDX], NEGATIVE, inode[WGHT_IDX]))
                else:
                    continue
                i += 1
            else:
                break
    return ret
コード例 #10
0
ファイル: ex-ising.py プロジェクト: jiaseny/kdsd
    temp = float(temp)  # Temperature under q
    seed = int(seed)  # Random seed

    print "n = %d\ntemp0 = %s\ntemp = %d\nseed = %s\nres_dir=%s\n" % \
        (n, temp0, temp, seed, res_dir)

    rand.seed(seed)

    l = 10  # Dimension of 2D-lattice
    d = l**2  # Dimension of random vector

    # ------------------------- Draw MCMC samples ------------------------- #

    print "Drawing MCMC samples ..."

    model_p = Ising(d)
    model_p.set_ferromagnet(l, temp0)
    samples_p = model_p.sample(num_iters=1E5, num_samples=n)

    # Set q to perturbed dist or true p
    true_dist = rand.binomial(n=1, p=.5)  # 0 for p, 1 for q

    model_q = Ising(d)
    temp_q = temp if true_dist else temp0
    model_q.set_ferromagnet(l, temp_q)
    samples_q = model_q.sample(num_iters=1E5, num_samples=n)

    # ------------------------- Perform KDSD test ------------------------- #

    print "Performing KDSD test ..."
コード例 #11
0
import numpy as np
from ising import Ising

Neq = 2000
Nav = 2000

Ls = [8, 16, 32]
Ts = np.linspace(2.1, 2.3, 21)
gamma = np.zeros(Ts.shape)
j = 1
for L in Ls:
    shape = (L, L)
    for i, T in enumerate(Ts):
        system = Ising(shape, T)
        system.equilibrate(Neq)
        m2, m4 = system.sample(None, None, Nav)[2:]
        gamma[i] = m4 / (m2 * m2)
        print(j, "/", len(Ls) * len(Ts), " finished")
        j += 1
    np.savetxt("gamma_L={}.txt".format(L), gamma)
コード例 #12
0
    lam_m = np.exp(beta) - np.sqrt(np.exp(2 * beta) - 2 * np.sinh(2 * beta))
    lam_p_div_lam_m = lam_p / lam_m
    lam_m_div_lam_p = 1 / lam_p_div_lam_m
    return (lam_m_div_lam_p**r +
            lam_m_div_lam_p**L * lam_p_div_lam_m**r) / (1 + lam_m_div_lam_p**L)


Neq = 50000
Nav = 10000
L = 16
shape = (L, )
T = 0.5
r_disc = np.arange(1, 9, 1)
r_cont = np.linspace(1, 8, 1000)

system = Ising(shape, T)
system.equilibrate(Neq)
C_ij = []
for r in r_disc:
    C_ij.append(system.sample((0, ), (r, ), Nav)[0])

sns.set()
plt.plot(r_disc, C_ij, '-o', color='royalblue')
plt.plot(r_cont,
         C(r_cont, L, T),
         label=r'$T=0.5$',
         color='royalblue',
         alpha=0.7)

T = 1
system = Ising(shape, T)
コード例 #13
0
ファイル: Data.py プロジェクト: nicolovalle/python_nmtp
from matplotlib import pyplot as plt
from ising import Ising
#from kurt import bootstrap_jacknife
import os

argv = docopt.docopt(__doc__, version="1.0")
L = [int(L_) for L_ in argv["-L"]]
bi = float(argv["-i"])
STEP = float(argv["-S"])
Nsteps = int(argv["-Q"])
beta = [bi + k * STEP for k in range(Nsteps)]
THERMA = int(argv["-t"])
NMC = int(argv["-n"])
START = argv["-s"]
OutDir = argv["-D"]

if not os.path.isdir(OutDir):
    print('Your directory seems not to exist :-( ')
    exit()

if os.listdir(OutDir):
    goon = input('Your directory is not empty! (~_^) Run anyway? (y/n) ')
    if not goon == 'y':
        exit()

for i in beta:
    for j in L:
        ising = Ising(j, i, THERMA, NMC, START)
        #ising.run(OutDir, i==beta[len(beta)-1] and j==L[len(L)-1] )
        ising.run(OutDir, False)
コード例 #14
0
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from ising import Ising

Ts = np.logspace(-5, 5 + 4, 11 + 4)
L = 16
shape = (L, L)

Neq = 2000
Nav = 2000

m = np.zeros(Ts.shape)
m2 = np.zeros(Ts.shape)
for i, T in enumerate(Ts):
    system = Ising(shape, T)
    system.equilibrate(Neq)
    m[i], m2[i] = system.sample(None, None, Nav)[1:-1]
    print(i + 1, "/", len(Ts), " finished")

np.savetxt("temperatures.txt", Ts)
np.savetxt("magnetization.txt", m)
np.savetxt("magnetization2.txt", m2)
コード例 #15
0
def train_net_predict_energy(L=10, N=5000):
    ising = Ising(L, N)
    X, y = ising.generateTrainingData1D()
    y /= L
    n_samples, n_features = X.shape

    nn = NeuralNetwork(inputs=L,
                       neurons=L * L,
                       outputs=1,
                       activations='sigmoid',
                       cost='mse',
                       silent=False)
    nn.addLayer(neurons=L * L)
    nn.addLayer(neurons=L * L)
    nn.addOutputLayer(activations='identity')

    validation_skip = 10
    epochs = 1000
    nn.fit(X.T,
           y,
           shuffle=True,
           batch_size=1000,
           validation_fraction=0.2,
           learning_rate=0.001,
           verbose=False,
           silent=False,
           epochs=epochs,
           validation_skip=validation_skip,
           optimizer='adam')

    # Use the net to predict the energies for the validation set.
    x_validation = nn.x_validation
    y_validation = nn.predict(x_validation)
    target_validation = nn.target_validation

    # Sort the targets for better visualization of the network output.
    ind = np.argsort(target_validation)
    y_validation = np.squeeze(y_validation.T[ind])
    target_validation = np.squeeze(target_validation.T[ind])

    # We dont want to plot the discontinuities in the target.
    target_validation[np.where(
        np.abs(np.diff(target_validation)) > 1e-5)] = np.nan

    plt.rc('text', usetex=True)
    plt.figure()
    plt.plot(target_validation, 'k--', label=r'Target')
    plt.plot(y_validation, 'r.', markersize=0.5, label=r'NN output')
    plt.legend(fontsize=10)
    plt.xlabel(r'Validation sample', fontsize=10)
    plt.ylabel(r'$E / L$', fontsize=10)
    #plt.savefig(os.path.join(os.path.dirname(__file__), 'figures', 'nn_1d_energy_predict' + str(L) + '.png'), transparent=True, bbox_inches='tight')

    # Plot the training / validation loss during training.
    training_loss = nn.training_loss
    validation_loss = nn.validation_loss

    # There are more training loss values than validation loss values, lets
    # align them so the plot makes sense.
    xaxis_validation_loss = np.zeros_like(validation_loss)
    xaxis_validation_loss[0] = 0
    xaxis_validation_loss[1:-1] = np.arange(validation_skip,
                                            len(training_loss),
                                            validation_skip)
    xaxis_validation_loss[-1] = len(training_loss)

    plt.figure()
    plt.semilogy(training_loss, 'r-', label=r'Training loss')
    plt.semilogy(xaxis_validation_loss,
                 validation_loss,
                 'k--',
                 label=r'Validation loss')
    plt.legend(fontsize=10)
    plt.xlabel(r'Epoch', fontsize=10)
    plt.ylabel(r'Cost $C(\theta)$', fontsize=10)
    #plt.savefig(os.path.join(os.path.dirname(__file__), 'figures', 'nn_1d_loss' + str(L) + '.png'), transparent=True, bbox_inches='tight')
    plt.show()
コード例 #16
0
def R2_versus_lasso():
    L = 3
    N = 10000
    training_fraction = 0.4
    ising = Ising(L, N)
    D, ry = ising.generateDesignMatrix1D()
    X, y = ising.generateTrainingData1D()
    y /= L

    D_train = D[int(training_fraction * N):, :]
    ry_train = ry[int(training_fraction * N):]
    D_validation = D[:int(training_fraction * N), :]
    ry_validation = ry[:int(training_fraction * N)]

    lasso = LeastSquares(method='lasso', backend='skl')
    lasso.setLambda(1e-2)
    lasso.fit(D_train, ry_train)
    lasso.y = ry_validation
    lasso_R2 = sklearn.metrics.mean_squared_error(
        ry_validation / L,
        lasso.predict(D_validation) / L)

    n_samples, n_features = X.shape

    nn = NeuralNetwork(inputs=L * L,
                       neurons=L,
                       outputs=1,
                       activations='identity',
                       cost='mse',
                       silent=False)
    nn.addLayer(neurons=1)
    nn.addOutputLayer(activations='identity')

    validation_skip = 100
    epochs = 50000
    nn.fit(D.T,
           ry,
           shuffle=True,
           batch_size=2000,
           validation_fraction=1 - training_fraction,
           learning_rate=0.0001,
           verbose=False,
           silent=False,
           epochs=epochs,
           validation_skip=validation_skip,
           optimizer='adam')

    plt.rc('text', usetex=True)
    validation_loss = nn.validation_loss_improving
    validation_ep = np.linspace(0, epochs, len(nn.validation_loss_improving))
    plt.semilogy(validation_ep, validation_loss, 'r-', label=r'NN')
    plt.semilogy([0, epochs],
                 np.array([lasso_R2, lasso_R2]),
                 'k--',
                 label=r'Lasso')
    plt.xlabel(r'Epoch', fontsize=10)
    plt.ylabel(r'Mean squared error', fontsize=10)
    plt.legend(fontsize=10)
    plt.xlim((0, epochs))
    ax = plt.gca()
    ymin, ymax = ax.get_ylim()
    if ymin > pow(10, -5):
        ymin = pow(10, -5)
    #plt.ylim((ymin,ymax))
    plt.savefig(os.path.join(os.path.dirname(__file__), 'figures',
                             'NN_compare_lasso.png'),
                transparent=True,
                bbox_inches='tight')