コード例 #1
0
ファイル: pybits.py プロジェクト: ismrmrd/ismrmrd-paper
def reconstruct_noise_scan(filename, noisesetname):
    dset = ismrmrd.Dataset(filename,noisesetname)
    header = ismrmrd.xsd.CreateFromDocument(dset.read_xml_header())
    bw = header.acquisitionSystemInformation.relativeReceiverNoiseBandwidth
    
    # Read the first acquisition to check the number of samples and coils
    nacq_noise = dset.number_of_acquisitions()
    acq = dset.read_acquisition(0)
    nsamp_noise = acq.number_of_samples
    ncoils_noise = acq.active_channels
    sampletime_noise = acq.sample_time_us

    # Accumulate the noise data into a big array
    noisedata = np.zeros([ncoils_noise,nsamp_noise,nacq_noise],dtype='complex')
    for n in range(nacq_noise):
        acq = dset.read_acquisition(n)
        noisedata[:,:,n] = acq.data 
    noisedata = np.reshape(noisedata, [ncoils_noise, nsamp_noise*nacq_noise])

    # Calculate the pre-whitening matrix        
    Mtx = coils.calculate_prewhitening(noisedata, scale_factor=1.0)

    # Close the noise data set
    dset.close()

    return noise_struct(Mtx, bw)
コード例 #2
0
ファイル: tpat_snr_scale.py プロジェクト: tnemelc/gadgetron
    def process(self, acq, data, *args):
        if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
            self.noise_data.append((acq, data))
        else:
            if len(self.noise_data):
                profiles = len(self.noise_data)
                channels = self.noise_data[0][1].shape[0]
                samples_per_profile = self.noise_data[0][1].shape[1]
                noise = np.zeros((channels, profiles * samples_per_profile),
                                 dtype=np.complex64)
                counter = 0
                for p in self.noise_data:
                    noise[:, counter *
                          samples_per_profile:(counter * samples_per_profile +
                                               samples_per_profile)] = p[1]
                    counter = counter + 1

                scale = (acq.sample_time_us /
                         self.noise_data[0][0].sample_time_us) * 0.79
                self.noise_dmtx = coils.calculate_prewhitening(
                    noise, scale_factor=scale)

                #Test the noise adjust
                d = self.noise_data[0][1]
                d2 = coils.apply_prewhitening(d, self.noise_dmtx)
                self.noise_data = list()

            if self.noise_dmtx is not None:
                data2 = coils.apply_prewhitening(data, self.noise_dmtx)
            else:
                data2 = data

            self.put_next(acq, data2)
        return 0
コード例 #3
0
 def process(self,acq,data,*args):
     if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
         self.noise_data.append((acq,data))
     else:
         if len(self.noise_data):
             profiles = len(self.noise_data)
             channels = self.noise_data[0][1].shape[0]
             samples_per_profile = self.noise_data[0][1].shape[1]
             noise = np.zeros((channels,profiles*samples_per_profile),dtype=np.complex64)
             counter = 0
             for p in self.noise_data:
                 noise[:,counter*samples_per_profile:(counter*samples_per_profile+samples_per_profile)] = p[1]
                 counter = counter + 1
             
             scale = (acq.sample_time_us/self.noise_data[0][0].sample_time_us)*0.79
             self.noise_dmtx = coils.calculate_prewhitening(noise,scale_factor=scale)
             
             #Test the noise adjust
             d = self.noise_data[0][1]
             d2 = coils.apply_prewhitening(d, self.noise_dmtx)                
             self.noise_data = list()
         
         if self.noise_dmtx is not None:
             data2 = coils.apply_prewhitening(data, self.noise_dmtx)
         else:
             data2 = data
             
         self.put_next(acq,data2)
     return 0
コード例 #4
0
ファイル: pybits.py プロジェクト: world2005/ismrmrd-paper
def reconstruct_noise_scan(filename, noisesetname):
    dset = ismrmrd.Dataset(filename, noisesetname)
    header = ismrmrd.xsd.CreateFromDocument(dset.read_xml_header())
    bw = header.acquisitionSystemInformation.relativeReceiverNoiseBandwidth

    # Read the first acquisition to check the number of samples and coils
    nacq_noise = dset.number_of_acquisitions()
    acq = dset.read_acquisition(0)
    nsamp_noise = acq.number_of_samples
    ncoils_noise = acq.active_channels
    sampletime_noise = acq.sample_time_us

    # Accumulate the noise data into a big array
    noisedata = np.zeros([ncoils_noise, nsamp_noise, nacq_noise],
                         dtype='complex')
    for n in range(nacq_noise):
        acq = dset.read_acquisition(n)
        noisedata[:, :, n] = acq.data
    noisedata = np.reshape(noisedata, [ncoils_noise, nsamp_noise * nacq_noise])

    # Calculate the pre-whitening matrix
    Mtx = coils.calculate_prewhitening(noisedata, scale_factor=1.0)

    # Close the noise data set
    dset.close()

    return noise_struct(Mtx, bw)
コード例 #5
0
#Undersample
reload(simulation)
acc_factor = 2
ref_lines = 16
(data,pat) = simulation.sample_data(phan,csm,acc_factor,ref_lines)

#%%
#Add noise
noise = np.random.standard_normal(data.shape) + 1j*np.random.standard_normal(data.shape)
noise = (5.0/matrix_size)*noise
kspace = np.logical_or(pat==1,pat==3).astype('float32')*(data + noise)
data = (pat>0).astype('float32')*(data + noise)

#%%
#Calculate the noise prewhitening matrix
dmtx = coils.calculate_prewhitening(noise)

#%%
# Apply prewhitening
kspace = coils.apply_prewhitening(kspace, dmtx) 
data = coils.apply_prewhitening(data, dmtx) 


#%%
#Reconstruct aliased images
alias_img = transform.transform_kspace_to_image(kspace,dim=(1,2)) * np.sqrt(acc_factor)
show.imshow(abs(alias_img))


#%%
reload(sense)
コード例 #6
0
            # TODO: Currently ignoring noise scans
            if not acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
                raise Exception(
                    "Errror: non noise scan found in noise calibration")

            noise[:, acqnum * noise_samples:acqnum * noise_samples +
                  noise_samples] = acq.data

        noise = noise.astype('complex64')

    #Calculate prewhiterner taking BWs into consideration
    a = dset.read_acquisition(firstacq)
    data_dwell_time = a.sample_time_us
    noise_receiver_bw_ratio = 0.79
    dmtx = coils.calculate_prewhitening(
        noise,
        scale_factor=(data_dwell_time / noise_dwell_time) *
        noise_receiver_bw_ratio)
#================================================================================
#
#
#================================================================================
# assemble information
#================================================================================
print "trajectory: ", enc.trajectory

# Matrix size
eNx = enc.encodedSpace.matrixSize.x
eNy = enc.encodedSpace.matrixSize.y
eNz = enc.encodedSpace.matrixSize.z
rNx = enc.reconSpace.matrixSize.x
rNy = enc.reconSpace.matrixSize.y
コード例 #7
0
    def compute(self):

        do_squeeze = self.getVal('Squeeze')
        do_remos = self.getVal('Remove Oversampling')
        do_zeropad = self.getVal('Zeropad')
        do_noiseadj = self.getVal('Noise Adjust')
        receiver_noise_bw = self.getVal('Receiver Noise BW Ratio')

        #Get the file name use the file browser widget
        fname = gpi.TranslateFileURI(self.getVal('File Browser'))

        #Check if the file exists
        if not os.path.exists(fname):
            self.log.node("Path does not exist: "+str(fname))
            return 0
        
        dset = ismrmrd.Dataset(fname, 'dataset', create_if_needed=False)

        xml_header = dset.read_xml_header()
        header = ismrmrd.xsd.CreateFromDocument(xml_header)
        self.setData('ISMRMRDHeader', str(xml_header))

        enc = header.encoding[0]

        # Matrix size
        eNx = enc.encodedSpace.matrixSize.x
        eNy = enc.encodedSpace.matrixSize.y
        eNz = enc.encodedSpace.matrixSize.z
        rNx = enc.reconSpace.matrixSize.x
        rNy = enc.reconSpace.matrixSize.y
        rNz = enc.reconSpace.matrixSize.z

        # Field of View
        eFOVx = enc.encodedSpace.fieldOfView_mm.x
        eFOVy = enc.encodedSpace.fieldOfView_mm.y
        eFOVz = enc.encodedSpace.fieldOfView_mm.z
        rFOVx = enc.reconSpace.fieldOfView_mm.x
        rFOVy = enc.reconSpace.fieldOfView_mm.y
        rFOVz = enc.reconSpace.fieldOfView_mm.z

        # Number of Slices, Reps, Contrasts, etc.
        ncoils = header.acquisitionSystemInformation.receiverChannels
        if enc.encodingLimits.slice != None:
            nslices = enc.encodingLimits.slice.maximum + 1
        else:
            nslices = 1
            
        if enc.encodingLimits.repetition != None:
            nreps = enc.encodingLimits.repetition.maximum + 1
        else:
            nreps = 1
        
        if enc.encodingLimits.contrast != None:
            ncontrasts = enc.encodingLimits.contrast.maximum + 1
        else:
            ncontrasts = 1


        # In case there are noise scans in the actual dataset, we will skip them.
        noise_data = list()
        noise_dmtx = None
        
        firstacq=0
        for acqnum in range(dset.number_of_acquisitions()):
            acq = dset.read_acquisition(acqnum)
            
            if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
                noise_data.append((acq.getHead(),acq.data))
                continue
            else:
                firstacq = acqnum
                break    

        if len(noise_data):
            profiles = len(noise_data)
            channels = noise_data[0][1].shape[0]
            samples_per_profile = noise_data[0][1].shape[1]
            noise = np.zeros((channels,profiles*samples_per_profile),dtype=np.complex64)
            counter = 0
            for p in noise_data:
                noise[:,counter*samples_per_profile:(counter*samples_per_profile+samples_per_profile)] = p[1]
                counter = counter + 1
                
            self.setData('noise',noise)
            
            scale = (acq.sample_time_us/noise_data[0][0].sample_time_us)*receiver_noise_bw
            noise_dmtx = coils.calculate_prewhitening(noise,scale_factor=scale)
            noise_data = list()
            
        # Empty array for the output data
        acq = dset.read_acquisition(firstacq)
        ro_length = acq.number_of_samples
        padded_ro_length = (acq.number_of_samples-acq.center_sample)*2

        
        size_nx = 0
        if do_remos:
            size_nx = rNx
            do_zeropad = True
        elif do_zeropad:
            size_nx = padded_ro_length
        else:
            size_nx = ro_length
            
        all_data = np.zeros((nreps, ncontrasts, nslices, ncoils, eNz, eNy, size_nx), dtype=np.complex64)

        # Loop through the rest of the acquisitions and stuff
        for acqnum in range(firstacq,dset.number_of_acquisitions()):
            acq = dset.read_acquisition(acqnum)

            acq_data_prw = np.zeros(acq.data.shape,dtype=np.complex64)
            acq_data_prw[:] = acq.data[:]
            
            if do_noiseadj and (noise_dmtx is not None):
                acq_data_prw = coils.apply_prewhitening(acq_data_prw, noise_dmtx)
 
            data2 = None
            
            if (padded_ro_length != ro_length) and do_zeropad: #partial fourier
                data2 = np.zeros((acq_data_prw.shape[0], padded_ro_length),dtype=np.complex64)
                offset = (padded_ro_length>>1)  - acq.center_sample
                data2[:,0+offset:offset+ro_length] = acq_data_prw
            else:
                data2 = acq_data_prw

            if do_remos:
                data2=transform.transform_kspace_to_image(data2,dim=(1,))
                data2=data2[:,(padded_ro_length>>2):(padded_ro_length>>2)+(padded_ro_length>>1)]
                data2=transform.transform_image_to_kspace(data2,dim=(1,)) * np.sqrt(float(padded_ro_length)/ro_length)
                
            # Stuff into the buffer
            rep = acq.idx.repetition
            contrast = acq.idx.contrast
            slice = acq.idx.slice
            y = acq.idx.kspace_encode_step_1
            z = acq.idx.kspace_encode_step_2
            
            all_data[rep, contrast, slice, :, z, y, :] = data2
                
        all_data = all_data.astype('complex64')

        if do_squeeze:
            all_data = np.squeeze(all_data)

        
        self.setData('data',all_data)
        
        return 0
コード例 #8
0
# Undersample
reload(simulation)
acc_factor = 2
ref_lines = 16
(data, pat) = simulation.sample_data(phan, csm, acc_factor, ref_lines)

#%%
# Add noise
noise = np.random.standard_normal(data.shape) + 1j * np.random.standard_normal(data.shape)
noise = (5.0 / matrix_size) * noise
kspace = np.logical_or(pat == 1, pat == 3).astype("float32") * (data + noise)
data = (pat > 0).astype("float32") * (data + noise)

#%%
# Calculate the noise prewhitening matrix
dmtx = coils.calculate_prewhitening(noise)

#%%
# Apply prewhitening
kspace = coils.apply_prewhitening(kspace, dmtx)
data = coils.apply_prewhitening(data, dmtx)


#%%
# Reconstruct aliased images
alias_img = transform.transform_kspace_to_image(kspace, dim=(1, 2)) * np.sqrt(acc_factor)
show.imshow(abs(alias_img))


#%%
reload(sense)
コード例 #9
0
for acqnum in range(dset.number_of_acquisitions()):
    acq = dset.read_acquisition(acqnum)
    
    if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
        print("Found noise scan at acq ", acqnum)
        continue
    else:
        firstacq = acqnum
        print("Imaging acquisition starts acq ", acqnum)
        break

#Calculate prewhiterner taking BWs into consideration
a = dset.read_acquisition(firstacq)
data_dwell_time = a.sample_time_us
noise_receiver_bw_ratio = 0.79
dmtx = coils.calculate_prewhitening(noise,scale_factor=(data_dwell_time/noise_dwell_time)*noise_receiver_bw_ratio)

    
#%%
# Process the actual data
all_data = np.zeros((nreps, ncontrasts, nslices, ncoils, eNz, eNy, rNx), dtype=np.complex64)

# Loop through the rest of the acquisitions and stuff
for acqnum in range(firstacq,dset.number_of_acquisitions()):
    acq = dset.read_acquisition(acqnum)

    acq_data_prw = coils.apply_prewhitening(acq.data,dmtx)

    # Remove oversampling if needed
    if eNx != rNx:
        xline = transform.transform_kspace_to_image(acq_data_prw, [1])