コード例 #1
0
ファイル: predictors.py プロジェクト: faroit/loudness
    def __init__(
        self,
        model,
        fs,
        outputName,
        globalLoudnessFeature=None,
        loudnessLevelFunction=None,
        loudnessLevel='abs'
    ):

        self.iterator = DynamicLoudnessIterator(
            model,
            fs,
            outputName,
            globalLoudnessFeature,
            loudnessLevelFunction
        )

        self.targetLoudnessLevel = loudnessLevel
        self.tol = 0.02
        self.nIters = 20
        self.predictions = None
        self.converged = False
        self.fs = fs
        self.duration = 1
        self.alpha = 0.5

        if ((type(loudnessLevel) is str) or (loudnessLevel == 2.4)):
            self.freqs = freqsISO389
            self.sPLs = thresholdsISO389
            self.targetLoudnessLevel = 2.4
        else:
            contour = ISO2262003LoudnessContours()
            self.freqs, self.sPLs = contour.phonToSPL(None, loudnessLevel)
        self.predictions = np.zeros(self.sPLs.size)
コード例 #2
0
ファイル: predictors.py プロジェクト: nils-werner/loudness
    def __init__(self, model, fs, outputName,
            globalLoudnessFeature = None,
            loudnessLevelFunction = None,
            loudnessLevel = 'abs'):

        self.iterator = DynamicLoudnessIterator(model, fs, outputName, 
                globalLoudnessFeature,
                loudnessLevelFunction)

        self.targetLoudnessLevel = loudnessLevel
        self.tol = 0.02
        self.nIters = 20
        self.predictions = None
        self.converged = False
        self.fs = fs
        self.duration = 1
        self.alpha = 0.5

        if ((type(loudnessLevel) is str) or (loudnessLevel == 2.4)):
            self.freqs = freqsISO389
            self.sPLs = thresholdsISO389
            self.targetLoudnessLevel = 2.4
        else:
            contour = ISO2262003LoudnessContours()
            self.freqs, self.sPLs = contour.phonToSPL(None, loudnessLevel)
        self.predictions = np.zeros(self.sPLs.size)
コード例 #3
0
ファイル: predictors.py プロジェクト: nils-werner/loudness
class DynamicLoudnessContourPredictor():

    def __init__(self, model, fs, outputName,
            globalLoudnessFeature = None,
            loudnessLevelFunction = None,
            loudnessLevel = 'abs'):

        self.iterator = DynamicLoudnessIterator(model, fs, outputName, 
                globalLoudnessFeature,
                loudnessLevelFunction)

        self.targetLoudnessLevel = loudnessLevel
        self.tol = 0.02
        self.nIters = 20
        self.predictions = None
        self.converged = False
        self.fs = fs
        self.duration = 1
        self.alpha = 0.5

        if ((type(loudnessLevel) is str) or (loudnessLevel == 2.4)):
            self.freqs = freqsISO389
            self.sPLs = thresholdsISO389
            self.targetLoudnessLevel = 2.4
        else:
            contour = ISO2262003LoudnessContours()
            self.freqs, self.sPLs = contour.phonToSPL(None, loudnessLevel)
        self.predictions = np.zeros(self.sPLs.size)

    def process(self):

        self.predictions = np.zeros(self.freqs.size)
        self.converged = np.zeros(self.freqs.size, dtype = bool)
        for i, freq in enumerate(self.freqs):
            print 'Freq: %0.2f, initial guess: %0.2f' % (freq, self.sPLs[i])
            s = Sound.tone([freq], dur = self.duration, fs = self.fs)
            s.applyRamp(0.1)
            s.useDBSPL()
            s.normalise(self.sPLs[i], 'RMS')

            self.predictions[i] = self.sPLs[i]
            self.predictions[i] += self.iterator.process(s.data,
                    self.targetLoudnessLevel,
                    self.tol, 
                    self.nIters,
                    self.alpha)
            self.converged[i] = self.iterator.converged

    def plotPredictions(self):

        plt.semilogx(self.freqs, self.sPLs, label = 'ISO')
        plt.semilogx(self.freqs, self.predictions, color = 'r', 
                linestyle = '--', label = 'Predicted')
        plt.legend()
        plt.show()

    def computeErrors(self):
        '''
        Returns a tuple of error vector (target - prediction), RMSE and maximum
        absolute error.
        '''
        error = self.sPLs - self.predictions
        rMSE = np.sqrt(np.mean(error * error))
        maxE = np.max(np.abs(error))
        return (error, rMSE, maxE)

    def getResults(self):
        outputDic = {}
        outputDic['Errors'], outputDic['RMSE'], outputDic['MXAE'] = self.computeErrors()
        outputDic['Frequencies'] = self.freqs
        outputDic['Targets'] = self.sPLs
        outputDic['Predictions'] = self.predictions
        outputDic['Converged'] = self.converged
        return outputDic
コード例 #4
0
ファイル: predictors.py プロジェクト: faroit/loudness
class DynamicLoudnessContourPredictor():

    def __init__(
        self,
        model,
        fs,
        outputName,
        globalLoudnessFeature=None,
        loudnessLevelFunction=None,
        loudnessLevel='abs'
    ):

        self.iterator = DynamicLoudnessIterator(
            model,
            fs,
            outputName,
            globalLoudnessFeature,
            loudnessLevelFunction
        )

        self.targetLoudnessLevel = loudnessLevel
        self.tol = 0.02
        self.nIters = 20
        self.predictions = None
        self.converged = False
        self.fs = fs
        self.duration = 1
        self.alpha = 0.5

        if ((type(loudnessLevel) is str) or (loudnessLevel == 2.4)):
            self.freqs = freqsISO389
            self.sPLs = thresholdsISO389
            self.targetLoudnessLevel = 2.4
        else:
            contour = ISO2262003LoudnessContours()
            self.freqs, self.sPLs = contour.phonToSPL(None, loudnessLevel)
        self.predictions = np.zeros(self.sPLs.size)

    def process(self):

        self.predictions = np.zeros(self.freqs.size)
        self.converged = np.zeros(
            self.freqs.size, dtype=bool
        )
        for i, freq in enumerate(self.freqs):
            print 'Freq: %0.2f, initial guess: %0.2f' % (freq, self.sPLs[i])
            s = Sound.tone([freq], dur=self.duration, fs=self.fs)
            s.applyRamp(0.1)
            s.useDBSPL()
            s.normalise(self.sPLs[i], 'RMS')

            self.predictions[i] = self.sPLs[i]
            self.predictions[i] += self.iterator.process(
                s.data,
                self.targetLoudnessLevel,
                self.tol,
                self.nIters,
                self.alpha
            )
            self.converged[i] = self.iterator.converged

    def plotPredictions(self):

        plt.semilogx(
            self.freqs, self.sPLs, label='ISO'
        )
        plt.semilogx(
            self.freqs, self.predictions, color='r',
            linestyle='--', label='Predicted'
        )
        plt.legend()
        plt.show()

    def computeErrors(self):
        '''
        Returns a tuple of error vector (target - prediction), RMSE and maximum
        absolute error.
        '''
        error = self.sPLs - self.predictions
        rMSE = np.sqrt(np.mean(error * error))
        maxE = np.max(np.abs(error))
        return (error, rMSE, maxE)

    def getResults(self):
        outputDic = {}
        outputDic['Errors'], outputDic['RMSE'], outputDic['MXAE'] = \
            self.computeErrors()

        outputDic['Frequencies'] = self.freqs
        outputDic['Targets'] = self.sPLs
        outputDic['Predictions'] = self.predictions
        outputDic['Converged'] = self.converged
        return outputDic