def _runLayer(self, layer_file): C0_8U = loadRGBA(layer_file) if C0_8U is None: return A_8U = alpha(C0_8U) if A_8U is None: return C0_32F = to32F(rgb(C0_8U)) L = normalizeVector(np.array([-0.2, 0.3, 0.7])) sfs_method = Wu08SFS(L, C0_32F, A_8U) sfs_method.run() N_32F = sfs_method.normal() fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 2 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(C0_8U, r"Shading: $C$") plot_grid.showImage(normalToColor(N_32F, A_8U), r"Estimated Normal: $N$") showMaximize()
def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U): M_32F = loadColorMap(colormap_file) L0 = normalizeVector(np.array([-0.2, 0.3, 0.6])) L0_img = lightSphere(L0) L0_txt = 0.01 * np.int32(100 * L0) C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F) I_32F = luminance(C0_32F) L = lightEstimation(I_32F, N0_32F, A_8U) L_txt = 0.01 * np.int32(100 * L) L_img = lightSphere(L) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(setAlpha(C0_32F, A_8U), r'Input image: $\mathbf{c}$', font_size=font_size) plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial normal: $\mathbf{N}_0$') plot_grid.showImage(L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' %(L0_txt[0], L0_txt[1], L0_txt[2])) plot_grid.showImage(L_img, r'Estimated light: $L = (%s, %s, %s)$' %(L_txt[0], L_txt[1], L_txt[2])) showMaximize()
def _runLayer(self, layer_file): C0_8U = loadRGBA(layer_file) if C0_8U is None: return A_8U = alpha(C0_8U) if A_8U is None: return C0_32F = to32F(rgb(C0_8U)) L = normalizeVector(np.array([-0.2, 0.3, 0.7])) sfs_method = Wu08SFS(L, C0_32F, A_8U) sfs_method.run() N_32F = sfs_method.normal() fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 2 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(C0_8U, r'Shading: $C$') plot_grid.showImage(normalToColor(N_32F, A_8U), r'Estimated Normal: $N$') showMaximize()
def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N0_32F, A_8U = normal_data # N0_32F = cv2.resize(N0_32F, (64, 64)) # A_8U = cv2.resize(A_8U, N0_32F.shape[:2]) A_32F = to32F(A_8U) L = normalizeVector(np.array([-0.2, 0.3, 0.7])) # C0_32F = ToonShader().diffuseShading(L, N0_32F) C0_32F = LambertShader().diffuseShading(L, N0_32F) sfs_method = Wu08SFS(L, C0_32F, A_8U) sfs_method.run() N_32F = sfs_method.normal() saveNormal(self.resultFile(self._data_file_name, result_name="Wu08"), N_32F, A_8U) C_error = sfs_method.shadingError() I_32F = sfs_method.brightness() I_32F = gray2rgb(I_32F) C_32F = sfs_method.shading() N0_32F = trim(N0_32F, A_8U) C0_32F = trim(C0_32F, A_8U) C_32F = trim(C_32F, A_8U) N_32F = trim(N_32F, A_8U) C_error = trim(C_error, A_8U) I_32F = trim(I_32F, A_8U) A_32F = trim(A_32F, A_8U) A_8U = trim(A_8U, A_8U) h, w = N_32F.shape[:2] N_error = angleErros(N_32F.reshape(-1, 3), N0_32F.reshape(-1, 3)).reshape(h, w) N_error[A_8U < np.max(A_8U)] = 0.0 fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 2 num_cols = 3 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(normalToColor(N0_32F, A_8U), r"Ground Truth Normal: $N_g$") plot_grid.showImage(normalToColor(N_32F, A_8U), r"Estimated Normal: $N$") plot_grid.showColorMap(N_error, r"Angle Error: $N_g, N$", v_min=0, v_max=30.0) plot_grid.showImage(setAlpha(C0_32F, A_32F), r"Shading: $C$") plot_grid.showImage(setAlpha(C_32F, A_32F), r"Estimated Shading: $C$") plot_grid.showColorMap(C_error, r"Shading Error: $C_g, C$", v_min=0, v_max=0.1) showMaximize()
def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N0_32F, A_8U = normal_data #N0_32F = cv2.resize(N0_32F, (64, 64)) #A_8U = cv2.resize(A_8U, N0_32F.shape[:2]) A_32F = to32F(A_8U) L = normalizeVector(np.array([-0.2, 0.3, 0.7])) # C0_32F = ToonShader().diffuseShading(L, N0_32F) C0_32F = LambertShader().diffuseShading(L, N0_32F) sfs_method = Wu08SFS(L, C0_32F, A_8U) sfs_method.run() N_32F = sfs_method.normal() saveNormal(self.resultFile(self._data_file_name, result_name="Wu08"), N_32F, A_8U) C_error = sfs_method.shadingError() I_32F = sfs_method.brightness() I_32F = gray2rgb(I_32F) C_32F = sfs_method.shading() N0_32F = trim(N0_32F, A_8U) C0_32F = trim(C0_32F, A_8U) C_32F = trim(C_32F, A_8U) N_32F = trim(N_32F, A_8U) C_error = trim(C_error, A_8U) I_32F = trim(I_32F, A_8U) A_32F = trim(A_32F, A_8U) A_8U = trim(A_8U, A_8U) h, w = N_32F.shape[:2] N_error = angleErros(N_32F.reshape(-1, 3), N0_32F.reshape(-1, 3)).reshape(h, w) N_error[A_8U < np.max(A_8U)] = 0.0 fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 2 num_cols = 3 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Ground Truth Normal: $N_g$') plot_grid.showImage(normalToColor(N_32F, A_8U), r'Estimated Normal: $N$') plot_grid.showColorMap(N_error, r'Angle Error: $N_g, N$', v_min=0, v_max=30.0) plot_grid.showImage(setAlpha(C0_32F, A_32F), r'Shading: $C$') plot_grid.showImage(setAlpha(C_32F, A_32F), r'Estimated Shading: $C$') plot_grid.showColorMap(C_error, r'Shading Error: $C_g, C$', v_min=0, v_max=0.1) showMaximize()
def _runLayer(self, layer_file): C0_8U = loadRGBA(layer_file) if C0_8U is None: return A_8U = alpha(C0_8U) # if A_8U is None: # return C0_32F = to32F(rgb(C0_8U)) I_32F = luminance(C0_32F) Lab_32F = rgb2Lab(C0_32F) th_specular = 0.2 th_contour = 0.02 th_material = 0.1 E_32F = DoG(I_32F, sigma=2.0) contour = th_contour * np.min(E_32F) - E_32F contour *= 1.0 / np.max(contour) contour = np.clip(contour, 0.0, 1.0) specular = E_32F - th_specular * np.max(E_32F) specular *= 1.0 / np.max(specular) specular = np.clip(specular, 0.0, 1.0) material = rgb(C0_8U) # edge_mask = np.zeros(I_32F.shape, dtype=np.uint8) # edge_mask[contour > 0.0] = 1.0 # material = cv2.inpaint(material, edge_mask, 3, cv2.INPAINT_TELEA) for i in xrange(1): material = cv2.medianBlur(material, ksize=7) # material = th_material * np.max(np.abs(E_32F)) - np.abs(E_32F) # material *= 1.0 / np.max(material) # material = np.clip(material, 0.0, 1.0) # material[material > 0.0] = 1.0 E_32F[E_32F < 0.0] = 0.0 fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(C0_8U, r'$C$') #plot_grid.showImage(setAlpha(C0_32F, material), r'$Material$') plot_grid.showImage(setAlpha(material, A_8U), r'$Material$') plot_grid.showImage(setAlpha(C0_32F, contour), r'$Contour$') plot_grid.showImage(setAlpha(C0_32F, specular), r'$Specular$') showMaximize()
def _runLayer(self, layer_file): C0_8U = loadRGBA(layer_file) if C0_8U is None: return A_8U = alpha(C0_8U) if A_8U is None: return C0_32F = to32F(rgb(C0_8U)) I_32F = luminance(C0_32F) N0_32F, A_8U = loadNormal( self.characterResultFile("N0_d.png", data_name="BaseDetailSepration")) Nd_32F, A_8U = loadNormal( self.characterResultFile("N_d_smooth.png", data_name="BaseDetailSepration")) Nb_32F, A_8U = loadNormal( self.characterResultFile("N_b_smooth.png", data_name="BaseDetailSepration")) W_32F = np.array(Nb_32F[:, :, 2]) W_32F = W_32F W_32F[W_32F < 0.95] = 0.0 L = lightEstimation(I_32F, N0_32F, A_8U) # L = lightEstimationByVoting(I_32F, N0_32F, A_8U) L_txt = 0.01 * np.int32(100 * L) L_img = lightSphere(L) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(C0_8U, r'$C$') plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$') plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$') plot_grid.showImage( L_img, r'$L: [%s, %s, %s]$' % (L_txt[0], L_txt[1], L_txt[2])) showMaximize()
def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N_32F, A_8U = normal_data N_32F = trim(N_32F, A_8U) A_8U = trim(A_8U, A_8U) A_32F = to32F(A_8U) L = normalizeVector(np.array([-0.2, 0.3, 0.7])) I_half = half_lambert.diffuse(N_32F, L) I_half = setAlpha(gray2rgb(I_half), A_32F) I_lambert = lambert.diffuse(N_32F, L) I_lambert = setAlpha(gray2rgb(I_lambert), A_32F) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.05, wspace=0.05) fig.suptitle("Depth From Normal", fontsize=font_size) plt.subplot(1, 4, 1) plt.title(r'Normal: $N$') plt.imshow(normalToColor(N_32F, A_8U)) plt.axis('off') plt.subplot(1, 4, 2) plt.title(r'Half Lambert: $I_h$') plt.imshow(I_half) plt.axis('off') plt.subplot(1, 4, 3) plt.title(r'Lambert: $I_l$') plt.imshow(I_lambert) plt.axis('off') showMaximize()
def _runLayer(self, layer_file): C0_8U = loadRGBA(layer_file) if C0_8U is None: return A_8U = alpha(C0_8U) if A_8U is None: return C0_32F = to32F(rgb(C0_8U)) I_32F = luminance(C0_32F) N0_32F, A_8U = loadNormal(self.characterResultFile("N0_d.png", data_name="BaseDetailSepration")) Nd_32F, A_8U = loadNormal(self.characterResultFile("N_d_smooth.png", data_name="BaseDetailSepration")) Nb_32F, A_8U = loadNormal(self.characterResultFile("N_b_smooth.png", data_name="BaseDetailSepration")) W_32F = np.array(Nb_32F[:, :, 2]) W_32F = W_32F W_32F[W_32F < 0.95] = 0.0 L = lightEstimation(I_32F, N0_32F, A_8U) # L = lightEstimationByVoting(I_32F, N0_32F, A_8U) L_txt = 0.01 * np.int32(100 * L) L_img = lightSphere(L) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(C0_8U, r'$C$') plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$') plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$') plot_grid.showImage(L_img, r'$L: [%s, %s, %s]$' %(L_txt[0], L_txt[1], L_txt[2])) showMaximize()
def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N0_32F, A_8U = normal_data A_32F = to32F(A_8U) L = normalizeVector(np.array([-0.2, 0.4, 0.7])) C0_32F = LambertShader().diffuseShading(L, N0_32F) I_32F = luminance(C0_32F) br_field = BrightnessField(I_32F, sigma=5.0) I_smooth_32F = br_field.smoothBrightness() dI = br_field.brightnessDifference() gx, gy = br_field.gradients() N_32F = br_field.field() fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 2 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(I_32F, r'$I$') plot_grid.showColorMap(dI, r'$dI$') plot_grid.showColorMap(gx, r'$gx$') plot_grid.showColorMap(gy, r'$gy$') plot_grid.showImage(normalToColor(N_32F, A_8U), r'$N$') plot_grid.showImage(N_32F[:, :, 2], r'$N_z$') showMaximize()
def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U): M_32F = loadColorMap(colormap_file) L0 = normalizeVector(np.array([-0.2, 0.3, 0.6])) L0_img = lightSphere(L0) L0_txt = 0.01 * np.int32(100 * L0) C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F) I_32F = luminance(C0_32F) L = lightEstimation(I_32F, N0_32F, A_8U) L_txt = 0.01 * np.int32(100 * L) L_img = lightSphere(L) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(setAlpha(C0_32F, A_8U), r'Input image: $\mathbf{c}$', font_size=font_size) plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial normal: $\mathbf{N}_0$') plot_grid.showImage( L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' % (L0_txt[0], L0_txt[1], L0_txt[2])) plot_grid.showImage( L_img, r'Estimated light: $L = (%s, %s, %s)$' % (L_txt[0], L_txt[1], L_txt[2])) showMaximize()
def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N0_32F, A_8U = normal_data A_32F = to32F(A_8U) N0_32F = trim(N0_32F, A_8U) A_32F = trim(A_32F, A_8U) A_8U = trim(A_8U, A_8U) L = normalizeVector(np.array([0.5, -0.2, 0.7])) C0_32F = ToonShader().diffuseShading(L, N0_32F) I0_32F = luminance(C0_32F) I_min, I_max = np.min(I0_32F), np.max(I0_32F) I_scale = (I0_32F - I_min) / (I_max - I_min) I_L = cv2.Laplacian(cv2.GaussianBlur(I_scale, (0, 0), 31.0), cv2.CV_32F, ksize=1) I_L_avg = np.average(np.abs(I_L)) Ix = cv2.Sobel(I0_32F, cv2.CV_64F, 1, 0, ksize=1) Ix = cv2.GaussianBlur(Ix, (0, 0), 3.0) Ixx = cv2.Sobel(Ix, cv2.CV_64F, 1, 0, ksize=1) Ixx = cv2.GaussianBlur(Ixx, (0, 0), 5.0) Iy = -cv2.Sobel(I0_32F, cv2.CV_64F, 0, 1, ksize=1) Iy = cv2.GaussianBlur(Iy, (0, 0), 3.0) Iyy = -cv2.Sobel(Iy, cv2.CV_64F, 0, 1, ksize=1) Iyy = cv2.GaussianBlur(Iyy, (0, 0), 5.0) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 2 num_cols = 5 plot_grid = SubplotGrid(num_rows, num_cols) Nx = cv2.Sobel(N0_32F[:, :, 0], cv2.CV_64F, 1, 0, ksize=1) Nx = cv2.GaussianBlur(Nx, (0, 0), 3.0) Nxx = cv2.Sobel(Nx, cv2.CV_64F, 1, 0, ksize=1) Nxx = cv2.GaussianBlur(Nxx, (0, 0), 5.0) Ny = -cv2.Sobel(N0_32F[:, :, 1], cv2.CV_64F, 0, 1, ksize=1) Ny = cv2.GaussianBlur(Ny, (0, 0), 3.0) Nyy = -cv2.Sobel(Ny, cv2.CV_64F, 0, 1, ksize=1) Nyy = cv2.GaussianBlur(Nyy, (0, 0), 5.0) Nz_L = cv2.Laplacian(cv2.GaussianBlur(N0_32F[:, :, 2], (0, 0), 5.0), cv2.CV_32F, ksize=5) Nz_L_avg = np.average(np.abs(Nz_L)) Nz_L *= 1.0 / Nz_L_avg I_L *= 1.0 / I_L_avg print I_L_avg, Nz_L_avg Nz_L = np.clip(Nz_L, -5.0, 5.0) I_L = np.clip(I_L, -5.0, 5.0) plot_grid.showColorMap(N0_32F[:, :, 0], r"$N_{x}$", v_min=-0.01, v_max=0.01) plot_grid.showColorMap(N0_32F[:, :, 1], r"$N_{y}$", v_min=-0.01, v_max=0.01) plot_grid.showColorMap(Nx, r"$N_{xx}$", v_min=-0.01, v_max=0.01) plot_grid.showColorMap(Ny, r"$N_{yy}$", v_min=-0.01, v_max=0.01) plot_grid.showColorMap(Nz_L, r"$Nz_L$") # plot_grid.showColorMap(Nx + Ny, r'$N_{xx} + N_{yy}$', v_min=-0.01, v_max=0.01) # Ixx[Ixx>0] = 1.0 # Ixx[Ixx<0] = -1.0 # Iyy[Iyy>0] = 1.0 # Iyy[Iyy<0] = -1.0 plot_grid.showColorMap(-Ix, r"$I_{x}$", v_min=-0.001, v_max=0.001) plot_grid.showColorMap(-Iy, r"$I_{y}$", v_min=-0.001, v_max=0.001) plot_grid.showColorMap(-Ixx, r"$I_{xx}$", v_min=-0.001, v_max=0.001) plot_grid.showColorMap(-Iyy, r"$I_{yy}$", v_min=-0.001, v_max=0.001) plot_grid.showColorMap(I_L, r"$I_L$") # plot_grid.showColorMap(-Ixx - Iyy, r'$I_{xx} + I_{yy}$', v_min=-0.01, v_max=0.01) # plot_grid.showColorMap(Iy, r'$I_{y}$') showMaximize()
def _runImp(self): normal_data = loadNormal(self._data_file) if normal_data is None: return N0_32F, A_8U = normal_data A_32F = to32F(A_8U) N0_32F = trim(N0_32F, A_8U) A_32F = trim(A_32F, A_8U) A_8U = trim(A_8U, A_8U) L = normalizeVector(np.array([0.5, -0.2, 0.7])) C0_32F = ToonShader().diffuseShading(L, N0_32F) I0_32F = luminance(C0_32F) I_min, I_max = np.min(I0_32F), np.max(I0_32F) I_scale = (I0_32F - I_min) / (I_max - I_min) I_L = cv2.Laplacian(cv2.GaussianBlur(I_scale, (0, 0), 31.0), cv2.CV_32F, ksize=1) I_L_avg = np.average(np.abs(I_L)) Ix = cv2.Sobel(I0_32F, cv2.CV_64F, 1, 0, ksize=1) Ix = cv2.GaussianBlur(Ix, (0, 0), 3.0) Ixx = cv2.Sobel(Ix, cv2.CV_64F, 1, 0, ksize=1) Ixx = cv2.GaussianBlur(Ixx, (0, 0), 5.0) Iy = -cv2.Sobel(I0_32F, cv2.CV_64F, 0, 1, ksize=1) Iy = cv2.GaussianBlur(Iy, (0, 0), 3.0) Iyy = -cv2.Sobel(Iy, cv2.CV_64F, 0, 1, ksize=1) Iyy = cv2.GaussianBlur(Iyy, (0, 0), 5.0) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 2 num_cols = 5 plot_grid = SubplotGrid(num_rows, num_cols) Nx = cv2.Sobel(N0_32F[:, :, 0], cv2.CV_64F, 1, 0, ksize=1) Nx = cv2.GaussianBlur(Nx, (0, 0), 3.0) Nxx = cv2.Sobel(Nx, cv2.CV_64F, 1, 0, ksize=1) Nxx = cv2.GaussianBlur(Nxx, (0, 0), 5.0) Ny = -cv2.Sobel(N0_32F[:, :, 1], cv2.CV_64F, 0, 1, ksize=1) Ny = cv2.GaussianBlur(Ny, (0, 0), 3.0) Nyy = -cv2.Sobel(Ny, cv2.CV_64F, 0, 1, ksize=1) Nyy = cv2.GaussianBlur(Nyy, (0, 0), 5.0) Nz_L = cv2.Laplacian(cv2.GaussianBlur(N0_32F[:, :, 2], (0, 0), 5.0), cv2.CV_32F, ksize=5) Nz_L_avg = np.average(np.abs(Nz_L)) Nz_L *= 1.0 / Nz_L_avg I_L *= 1.0 / I_L_avg print I_L_avg, Nz_L_avg Nz_L = np.clip(Nz_L, -5.0, 5.0) I_L = np.clip(I_L, -5.0, 5.0) plot_grid.showColorMap(N0_32F[:, :, 0], r'$N_{x}$', v_min=-0.01, v_max=0.01) plot_grid.showColorMap(N0_32F[:, :, 1], r'$N_{y}$', v_min=-0.01, v_max=0.01) plot_grid.showColorMap(Nx, r'$N_{xx}$', v_min=-0.01, v_max=0.01) plot_grid.showColorMap(Ny, r'$N_{yy}$', v_min=-0.01, v_max=0.01) plot_grid.showColorMap(Nz_L, r'$Nz_L$') #plot_grid.showColorMap(Nx + Ny, r'$N_{xx} + N_{yy}$', v_min=-0.01, v_max=0.01) # Ixx[Ixx>0] = 1.0 # Ixx[Ixx<0] = -1.0 # Iyy[Iyy>0] = 1.0 # Iyy[Iyy<0] = -1.0 plot_grid.showColorMap(-Ix, r'$I_{x}$', v_min=-0.001, v_max=0.001) plot_grid.showColorMap(-Iy, r'$I_{y}$', v_min=-0.001, v_max=0.001) plot_grid.showColorMap(-Ixx, r'$I_{xx}$', v_min=-0.001, v_max=0.001) plot_grid.showColorMap(-Iyy, r'$I_{yy}$', v_min=-0.001, v_max=0.001) plot_grid.showColorMap(I_L, r'$I_L$') #plot_grid.showColorMap(-Ixx - Iyy, r'$I_{xx} + I_{yy}$', v_min=-0.01, v_max=0.01) #plot_grid.showColorMap(Iy, r'$I_{y}$') showMaximize()