def aiger_witness_to_ivy_trace(aiger,witnessfilename,action,stvarset,ext_act,annot,consts,decoder): with open(witnessfilename,'r') as f: res = f.readline().strip() if res != '1': badwit() tr = None aiger.sub.reset() lines = [] for line in f: if line.endswith('\n'): line = line[:-1] lines.append(line) print '\nCounterexample follows:' print 80*'-' current = dict() count = 0 for line in lines: if tr: print '' cols = line.split(' ') # iu.dbg('cols') if len(cols) != 4: badwit() pre,inp,out,post = cols aiger.sub.step(inp) count += 1 if count == len(lines): invar_fail = il.Symbol('invar__fail',il.find_sort('bool')) if il.is_true(aiger.get_sym(invar_fail)): break # print 'inputs:' # for v in aiger.inputs: # if v in decoder: # print ' {} = {}'.format(decoder[v],aiger.get_sym(v)) print 'path:' match_annotation(action,annot,AigerMatchHandler(aiger,decoder,consts,stvarset,current)) aiger.sub.next() post = aiger.sub.latch_vals() # use this, since file can be wrong! stvals = [] stmap = aiger.get_state(post) # iu.dbg('stmap') current = dict() for v in aiger.latches: # last two are used for encoding if v in decoder and v.name != '__init': val = stmap[v] if val is not None: stvals.append(il.Equals(decoder[v],val)) current[decoder[v]] = val print 'state:' for stval in stvals: print ' {}'.format(stval) if not tr: tr = IvyMCTrace(stvals) # first transition is initialization else: tr.add_state(stvals,ext_act) # remainder are exported actions print 80*'-' if tr is None: badwit() return tr
def __init__(self,inputs,latches,outputs): # iu.dbg('inputs') # iu.dbg('latches') # iu.dbg('outputs') inputs = inputs + [il.Symbol('%%bogus%%',il.find_sort('bool'))] # work around abc bug self.inputs = inputs self.latches = latches self.outputs = outputs self.gates = [] self.map = dict() self.next_id = 1 self.values = dict() for x in inputs + latches: self.map[x] = self.next_id * 2 # print 'var: {} = {}'.format(x,self.next_id * 2) self.next_id += 1
def __call__(self, ivy): for decl in ivy.decls: with ASTContext(decl): n = decl.name() # print "decl: {} : {}".format(n,decl.lineno if hasattr(decl,'lineno') else None) if n == 'assert': n = '_assert' # reserved in python! if hasattr(self, n): for x in decl.args: getattr(self, n)(x) from ivy_ast import ASTContext # ast compilation ivy_ast.Variable.get_sort = lambda self: ivy_logic.find_sort(self.sort.rep) def thing(self): with ASTContext(self): return self.cmpl() # "roots" are AST objects that bind variables, such as assignment, assume, etc. # some roots have symbols as args instead of terms (e.g., field assign) def compile_root_args(self): return [(find_symbol(a) if isinstance(a, str) else a.compile()) for a in self.args] def other_thing(self):
def cmpl_sort(sortname): return ivy_logic.find_sort(resolve_alias(sortname))
def __call__(self,ivy): for decl in ivy.decls: with ASTContext(decl): n = decl.name() # print "decl: {} : {}".format(n,decl.lineno if hasattr(decl,'lineno') else None) if n == 'assert': n = '_assert' # reserved in python! if hasattr(self,n): for x in decl.args: getattr(self,n)(x) from ivy_ast import ASTContext # ast compilation ivy_ast.Variable.get_sort = lambda self: ivy_logic.find_sort(resolve_alias(self.sort.rep)) def thing(self): with ASTContext(self): return self.cmpl() # "roots" are AST objects that bind variables, such as assignment, assume, etc. # some roots have symbols as args instead of terms (e.g., field assign) def compile_root_args(self): return [(find_symbol(a) if isinstance(a,str) else a.compile()) for a in self.args] def other_thing(self): # we have to do sort inference on roots if hasattr(self,'sort_infer_root'): with top_sort_as_default(): res = self.clone(compile_root_args(self))
def __call__(self,ivy): for decl in ivy.decls: with ASTContext(decl): n = decl.name() # print "decl: {} : {}".format(n,decl.lineno if hasattr(decl,'lineno') else None) if n == 'assert': n = '_assert' # reserved in python! if hasattr(self,n): for x in decl.args: getattr(self,n)(x) from ivy_ast import ASTContext # ast compilation ivy_ast.Variable.get_sort = lambda self: ivy_logic.find_sort(self.sort.rep) def thing(self): with ASTContext(self): return self.cmpl() # "roots" are AST objects that bind variables, such as assignment, assume, etc. # some roots have symbols as args instead of terms (e.g., field assign) def compile_root_args(self): return [(find_symbol(a) if isinstance(a,str) else a.compile()) for a in self.args] def other_thing(self): # we have to do sort inference on roots if hasattr(self,'sort_infer_root'): with top_sort_as_default(): res = self.clone(compile_root_args(self))
def __call__(self, ivy): for decl in ivy.decls: with ASTContext(decl): n = decl.name() # print "decl: {} : {}".format(n,decl.lineno if hasattr(decl,'lineno') else None) if n == 'assert': n = '_assert' # reserved in python! if hasattr(self, n): for x in decl.args: getattr(self, n)(x) from ivy_ast import ASTContext # ast compilation ivy_ast.Variable.get_sort = lambda self: ivy_logic.find_sort( resolve_alias(self.sort.rep)) def thing(self): with ASTContext(self): return self.cmpl() # "roots" are AST objects that bind variables, such as assignment, assume, etc. # some roots have symbols as args instead of terms (e.g., field assign) def compile_root_args(self): return [(find_symbol(a) if isinstance(a, str) else a.compile()) for a in self.args] def other_thing(self):
def to_aiger(mod,ext_act): erf = il.Symbol('err_flag',il.find_sort('bool')) errconds = [] add_err_flag_mod(mod,erf,errconds) # we use a special state variable __init to indicate the initial state ext_acts = [mod.actions[x] for x in sorted(mod.public_actions)] ext_act = ia.EnvAction(*ext_acts) init_var = il.Symbol('__init',il.find_sort('bool')) init = add_err_flag(ia.Sequence(*([a for n,a in mod.initializers]+[ia.AssignAction(init_var,il.And())])),erf,errconds) action = ia.Sequence(ia.AssignAction(erf,il.Or()),ia.IfAction(init_var,ext_act,init)) # get the invariant to be proved, replacing free variables with # skolems. First, we apply any proof tactics. pc = ivy_proof.ProofChecker(mod.axioms,mod.definitions,mod.schemata) pmap = dict((lf.id,p) for lf,p in mod.proofs) conjs = [] for lf in mod.labeled_conjs: if lf.id in pmap: proof = pmap[lf.id] subgoals = pc.admit_proposition(lf,proof) conjs.extend(subgoals) else: conjs.append(lf) invariant = il.And(*[il.drop_universals(lf.formula) for lf in conjs]) # iu.dbg('invariant') skolemizer = lambda v: ilu.var_to_skolem('__',il.Variable(v.rep,v.sort)) vs = ilu.used_variables_in_order_ast(invariant) sksubs = dict((v.rep,skolemizer(v)) for v in vs) invariant = ilu.substitute_ast(invariant,sksubs) invar_syms = ilu.used_symbols_ast(invariant) # compute the transition relation stvars,trans,error = action.update(mod,None) # print 'action : {}'.format(action) # print 'annotation: {}'.format(trans.annot) annot = trans.annot # match_annotation(action,annot,MatchHandler()) indhyps = [il.close_formula(il.Implies(init_var,lf.formula)) for lf in mod.labeled_conjs] # trans = ilu.and_clauses(trans,indhyps) # save the original symbols for trace orig_syms = ilu.used_symbols_clauses(trans) orig_syms.update(ilu.used_symbols_ast(invariant)) # TODO: get the axioms (or maybe only the ground ones?) # axioms = mod.background_theory() # rn = dict((sym,tr.new(sym)) for sym in stvars) # next_axioms = ilu.rename_clauses(axioms,rn) # return ilu.and_clauses(axioms,next_axioms) funs = set() for df in trans.defs: funs.update(ilu.used_symbols_ast(df.args[1])) for fmla in trans.fmlas: funs.update(ilu.used_symbols_ast(fmla)) # funs = ilu.used_symbols_clauses(trans) funs.update(ilu.used_symbols_ast(invariant)) funs = set(sym for sym in funs if il.is_function_sort(sym.sort)) iu.dbg('[str(fun) for fun in funs]') # Propositionally abstract # step 1: get rid of definitions of non-finite symbols by turning # them into constraints new_defs = [] new_fmlas = [] for df in trans.defs: if len(df.args[0].args) == 0 and is_finite_sort(df.args[0].sort): new_defs.append(df) else: fmla = df.to_constraint() new_fmlas.append(fmla) trans = ilu.Clauses(new_fmlas+trans.fmlas,new_defs) # step 2: get rid of ite's over non-finite sorts, by introducing constraints cnsts = [] new_defs = [elim_ite(df,cnsts) for df in trans.defs] new_fmlas = [elim_ite(fmla,cnsts) for fmla in trans.fmlas] trans = ilu.Clauses(new_fmlas+cnsts,new_defs) # step 3: eliminate quantfiers using finite instantiations from_asserts = il.And(*[il.Equals(x,x) for x in ilu.used_symbols_ast(il.And(*errconds)) if tr.is_skolem(x) and not il.is_function_sort(x.sort)]) iu.dbg('from_asserts') invar_syms.update(ilu.used_symbols_ast(from_asserts)) sort_constants = mine_constants(mod,trans,il.And(invariant,from_asserts)) sort_constants2 = mine_constants2(mod,trans,invariant) print '\ninstantiations:' trans,invariant = Qelim(sort_constants,sort_constants2)(trans,invariant,indhyps) # print 'after qe:' # print 'trans: {}'.format(trans) # print 'invariant: {}'.format(invariant) # step 4: instantiate the axioms using patterns # We have to condition both the transition relation and the # invariant on the axioms, so we define a boolean symbol '__axioms' # to represent the axioms. axs = instantiate_axioms(mod,stvars,trans,invariant,sort_constants,funs) ax_conj = il.And(*axs) ax_var = il.Symbol('__axioms',ax_conj.sort) ax_def = il.Definition(ax_var,ax_conj) invariant = il.Implies(ax_var,invariant) trans = ilu.Clauses(trans.fmlas+[ax_var],trans.defs+[ax_def]) # step 5: eliminate all non-propositional atoms by replacing with fresh booleans # An atom with next-state symbols is converted to a next-state symbol if possible stvarset = set(stvars) prop_abs = dict() # map from atoms to proposition variables global prop_abs_ctr # sigh -- python lameness prop_abs_ctr = 0 # counter for fresh symbols new_stvars = [] # list of fresh symbols # get the propositional abstraction of an atom def new_prop(expr): res = prop_abs.get(expr,None) if res is None: prev = prev_expr(stvarset,expr,sort_constants) if prev is not None: # print 'stvar: old: {} new: {}'.format(prev,expr) pva = new_prop(prev) res = tr.new(pva) new_stvars.append(pva) prop_abs[expr] = res # prevent adding this again to new_stvars else: global prop_abs_ctr res = il.Symbol('__abs[{}]'.format(prop_abs_ctr),expr.sort) # print '{} = {}'.format(res,expr) prop_abs[expr] = res prop_abs_ctr += 1 return res # propositionally abstract an expression global mk_prop_fmlas mk_prop_fmlas = [] def mk_prop_abs(expr): if il.is_quantifier(expr) or len(expr.args) > 0 and any(not is_finite_sort(a.sort) for a in expr.args): return new_prop(expr) return expr.clone(map(mk_prop_abs,expr.args)) # apply propositional abstraction to the transition relation new_defs = map(mk_prop_abs,trans.defs) new_fmlas = [mk_prop_abs(il.close_formula(fmla)) for fmla in trans.fmlas] # find any immutable abstract variables, and give them a next definition def my_is_skolem(x): res = tr.is_skolem(x) and x not in invar_syms return res def is_immutable_expr(expr): res = not any(my_is_skolem(sym) or tr.is_new(sym) or sym in stvarset for sym in ilu.used_symbols_ast(expr)) return res for expr,v in prop_abs.iteritems(): if is_immutable_expr(expr): new_stvars.append(v) print 'new state: {}'.format(expr) new_defs.append(il.Definition(tr.new(v),v)) trans = ilu.Clauses(new_fmlas+mk_prop_fmlas,new_defs) # apply propositional abstraction to the invariant invariant = mk_prop_abs(invariant) # create next-state symbols for atoms in the invariant (is this needed?) rn = dict((sym,tr.new(sym)) for sym in stvars) mk_prop_abs(ilu.rename_ast(invariant,rn)) # this is to pick up state variables from invariant # update the state variables by removing the non-finite ones and adding the fresh state booleans stvars = [sym for sym in stvars if is_finite_sort(sym.sort)] + new_stvars # iu.dbg('trans') # iu.dbg('stvars') # iu.dbg('invariant') # exit(0) # For each state var, create a variable that corresponds to the input of its latch # Also, havoc all the state bits except the init flag at the initial time. This # is needed because in aiger, all latches start at 0! def fix(v): return v.prefix('nondet') def curval(v): return v.prefix('curval') def initchoice(v): return v.prefix('initchoice') stvars_fix_map = dict((tr.new(v),fix(v)) for v in stvars) stvars_fix_map.update((v,curval(v)) for v in stvars if v != init_var) trans = ilu.rename_clauses(trans,stvars_fix_map) # iu.dbg('trans') new_defs = trans.defs + [il.Definition(ilu.sym_inst(tr.new(v)),ilu.sym_inst(fix(v))) for v in stvars] new_defs.extend(il.Definition(curval(v),il.Ite(init_var,v,initchoice(v))) for v in stvars if v != init_var) trans = ilu.Clauses(trans.fmlas,new_defs) # Turn the transition constraint into a definition cnst_var = il.Symbol('__cnst',il.find_sort('bool')) new_defs = list(trans.defs) new_defs.append(il.Definition(tr.new(cnst_var),fix(cnst_var))) new_defs.append(il.Definition(fix(cnst_var),il.Or(cnst_var,il.Not(il.And(*trans.fmlas))))) stvars.append(cnst_var) trans = ilu.Clauses([],new_defs) # Input are all the non-defined symbols. Output indicates invariant is false. # iu.dbg('trans') def_set = set(df.defines() for df in trans.defs) def_set.update(stvars) # iu.dbg('def_set') used = ilu.used_symbols_clauses(trans) used.update(ilu.symbols_ast(invariant)) inputs = [sym for sym in used if sym not in def_set and not il.is_interpreted_symbol(sym)] fail = il.Symbol('__fail',il.find_sort('bool')) outputs = [fail] # iu.dbg('trans') # make an aiger aiger = Encoder(inputs,stvars,outputs) comb_defs = [df for df in trans.defs if not tr.is_new(df.defines())] invar_fail = il.Symbol('invar__fail',il.find_sort('bool')) # make a name for invariant fail cond comb_defs.append(il.Definition(invar_fail,il.Not(invariant))) aiger.deflist(comb_defs) for df in trans.defs: if tr.is_new(df.defines()): aiger.set(tr.new_of(df.defines()),aiger.eval(df.args[1])) miter = il.And(init_var,il.Not(cnst_var),il.Or(invar_fail,il.And(fix(erf),il.Not(fix(cnst_var))))) aiger.set(fail,aiger.eval(miter)) # aiger.sub.debug() # make a decoder for the abstract propositions decoder = dict((y,x) for x,y in prop_abs.iteritems()) for sym in aiger.inputs + aiger.latches: if sym not in decoder and sym in orig_syms: decoder[sym] = sym cnsts = set(sym for syms in sort_constants.values() for sym in syms) return aiger,decoder,annot,cnsts,action,stvarset
class ASTContext(object): """ ast compiling context, handles line numbers """ def __init__(self,ast): self.ast = ast def __enter__(self): return self def __exit__(self,exc_type, exc_val, exc_tb): if isinstance(exc_val,ivy_logic.Error): # assert False raise IvyError(self.ast,str(exc_val)) if exc_type == IvyError and exc_val.lineno == None and hasattr(self.ast,'lineno'): exc_val.lineno = self.ast.lineno return False # don't block any exceptions ivy_ast.Variable.get_sort = lambda self: ivy_logic.find_sort(self.sort.rep) def thing(self): with ASTContext(self): return self.cmpl() # "roots" are AST objects that bind variables, such as assignment, assume, etc. # some roots have symbols as args instead of terms (e.g., field assign) def compile_root_args(self): return [(find_symbol(a) if isinstance(a,str) else a.compile()) for a in self.args] def other_thing(self): # we have to do sort inference on roots if hasattr(self,'sort_infer_root'): with top_sort_as_default(): res = self.clone(compile_root_args(self))