def test_output_dims(): data = Array('testa', numpy.zeros((10, 10, 1))) label = Array('testy', numpy.zeros((10, 1))) xin = Input(data.shape, name='asdf') out = Flatten()(xin) out = Dense(1)(out) m = Model(xin, out) # False due to mismatch of names assert not _dimension_match(m, label, 'output_layers') xin = Input(data.shape, name='testa') out = Flatten()(xin) out = Dense(2, name='testy')(out) m = Model(xin, out) # False due to mismatch of dims assert not _dimension_match(m, label, 'output_layers') xin = Input(data.shape, name='testa') out = Flatten()(xin) out = Dense(1, name='testy')(out) m = Model(xin, out) # False due to mismatch of dims assert _dimension_match(m, label, 'output_layers') assert _dimension_match(m, None, 'output_layers')
def test_input_dims(): data = Array('testa', numpy.zeros((10, 10, 1))) xin = Input((10, 1), name='testy') out = Dense(1)(xin) m = Model(xin, out) # False due to mismatch of names assert not _dimension_match(m, data, 'input_layers') xin = Input((20, 10, 1), name='testa') out = Dense(1)(xin) m = Model(xin, out) # False due to mismatch of dims assert not _dimension_match(m, data, 'input_layers') # more input datasets supplied than inputs to models assert not _dimension_match(m, [data, data], 'input_layers') xin = Input((10, 1), name='testa') out = Dense(1)(xin) m = Model(xin, out) # False due to mismatch of dims assert _dimension_match(m, data, 'input_layers')