コード例 #1
0
ファイル: test_model.py プロジェクト: zorro430/JAQS
def test_model():
    model.StockSelector()
    model.SimpleCostModel()
    model.AlphaContext()
    model.FactorRiskModel()
    model.FactorSignalModel()
    
コード例 #2
0
ファイル: test_backtest.py プロジェクト: liuleicode/JAQS
def test_alpha_strategy_dataview():
    save_dataview()

    dv = DataView()
    dv.load_dataview(folder_path=dataview_dir_path)

    props = {
        "start_date": dv.start_date,
        "end_date": dv.end_date,
        "period": "week",
        "days_delay": 0,
        "init_balance": 1e8,
        "position_ratio": 0.7,
        'commission_rate': 0.0
    }

    trade_api = AlphaTradeApi()
    bt = AlphaBacktestInstance()

    risk_model = model.FactorRiskModel()
    signal_model = model.FactorSignalModel()
    cost_model = model.SimpleCostModel()
    stock_selector = model.StockSelector()

    signal_model.add_signal(name='my_factor', func=my_factor)
    cost_model.consider_cost(name='my_commission',
                             func=my_commission,
                             options={'myrate': 1e-2})
    stock_selector.add_filter(name='total_profit_growth', func=my_selector)
    stock_selector.add_filter(name='no_new_stocks',
                              func=my_selector_no_new_stocks)

    strategy = AlphaStrategy(signal_model=signal_model,
                             stock_selector=stock_selector,
                             cost_model=cost_model,
                             risk_model=risk_model,
                             pc_method='factor_value_weight')
    pm = PortfolioManager()
    # strategy = AlphaStrategy(signal_model=signal_model, pc_method='factor_value_weight')
    # strategy = AlphaStrategy(stock_selector=stock_selector, pc_method='market_value_weight')
    # strategy = AlphaStrategy()

    context = model.AlphaContext(dataview=dv,
                                 trade_api=trade_api,
                                 instance=bt,
                                 strategy=strategy,
                                 pm=pm)
    for mdl in [risk_model, signal_model, cost_model, stock_selector]:
        mdl.register_context(context)

    bt.init_from_config(props)

    bt.run_alpha()

    bt.save_results(folder_path=backtest_result_dir_path)
コード例 #3
0
def test_alpha_strategy_dataview():
    dv = DataView()
    dv.load_dataview(folder_path=dataview_dir_path)
    #回测参数选择
    props = {
        "benchmark": "000905.SH",
        "universe": ','.join(dv.symbol),
        "start_date": 20170605,
        "end_date": 20180807,
        "period": "day",
        "days_delay": 0,
        "init_balance": 1e9,
        "position_ratio": 1.0,
        "commission_rate": 0.0015,  #手续费
        "n_periods": 2
    }
    props.update(data_config)
    props.update(trade_config)

    trade_api = AlphaTradeApi()

    signal_model = model.FactorSignalModel()
    #添加信号
    signal_model.add_signal('alpha3', alpha)  #在使用新因子时,alpha3应改为新因子的名称
    stock_selector = model.StockSelector()
    stock_selector.add_filter(name='myselector', func=my_selector)

    strategy = AlphaStrategy(stock_selector=stock_selector,
                             signal_model=signal_model,
                             pc_method='factor_value_weight')
    pm = PortfolioManager()

    bt = AlphaBacktestInstance()

    context = model.Context(dataview=dv,
                            instance=bt,
                            strategy=strategy,
                            trade_api=trade_api,
                            pm=pm)

    for mdl in [signal_model, stock_selector]:
        mdl.register_context(context)

    bt.init_from_config(props)

    bt.run_alpha()

    bt.save_results(folder_path=backtest_result_dir_path)
コード例 #4
0
def test_alpha_strategy_dataview():
    dv = DataView()

    dv.load_dataview(folder_path=dataview_dir_path)

    props = {
        "benchmark": "000300.SH",
        "universe": ','.join(dv.symbol),
        "start_date": 20170131,
        "end_date": dv.end_date,
        "period": "month",
        "days_delay": 0,
        "init_balance": 1e9,
        "position_ratio": 1.0,
    }
    props.update(data_config)
    props.update(trade_config)

    trade_api = AlphaTradeApi()

    def singal_gq30(context, user_options=None):
        import numpy as np
        res = np.power(context.snapshot['gq30'], 8)
        return res

    signal_model = model.FactorSignalModel()
    signal_model.add_signal('signal_gq30', singal_gq30)

    strategy = AlphaStrategy(signal_model=signal_model,
                             pc_method='factor_value_weight')
    pm = PortfolioManager()

    bt = AlphaBacktestInstance()

    context = model.Context(dataview=dv,
                            instance=bt,
                            strategy=strategy,
                            trade_api=trade_api,
                            pm=pm)

    signal_model.register_context(context)

    bt.init_from_config(props)

    bt.run_alpha()

    bt.save_results(folder_path=backtest_result_dir_path)
コード例 #5
0
ファイル: Graham.py プロジェクト: liuleicode/JAQS
def test_alpha_strategy_dataview():
    dv = DataView()
    dv.load_dataview(folder_path=dataview_dir_path)

    props = {
        "start_date": dv.start_date,
        "end_date": dv.end_date,
        "period": "week",
        "days_delay": 0,
        "init_balance": 1e8,
        "position_ratio": 1.0,
    }
    props.update(data_config)
    props.update(trade_config)

    trade_api = AlphaTradeApi()

    stock_selector = model.StockSelector()
    stock_selector.add_filter(name='myselector', func=my_selector)

    signal_model = model.FactorSignalModel()
    signal_model.add_signal(name='signalsize', func=signal_size)

    strategy = AlphaStrategy(stock_selector=stock_selector,
                             pc_method='factor_value_weight',
                             signal_model=signal_model)
    pm = PortfolioManager()

    bt = AlphaBacktestInstance()
    context = model.Context(dataview=dv,
                            instance=bt,
                            strategy=strategy,
                            trade_api=trade_api,
                            pm=pm)

    for mdl in [signal_model, stock_selector]:
        mdl.register_context(context)

    bt.init_from_config(props)
    bt.run_alpha()

    bt.save_results(folder_path=backtest_result_dir_path)
コード例 #6
0
ファイル: alphaSimple.py プロジェクト: baqiang/datatest
def test_alpha_strategy_dataview():
    dv = DataView()

    dv.load_dataview(folder_path=dataview_dir_path)

    props = {
        "symbol": dv.symbol,
        "universe": ','.join(dv.symbol),

        "start_date": dv.start_date,
        "end_date": dv.end_date,

        "period": "week",
        "days_delay": 0,

        "init_balance": 1e7,
        "position_ratio": 1.0,
        "commission_rate": 2E-4  # 手续费万2
    }
    props.update(data_config)
    props.update(trade_config)

    trade_api = AlphaTradeApi()

    signal_model = model.FactorSignalModel()
    signal_model.add_signal('stockWeight', stockWeight)

    strategy = AlphaStrategy(signal_model=signal_model, pc_method='factor_value_weight')
    pm = PortfolioManager()

    bt = AlphaBacktestInstance()
    
    context = model.Context(dataview=dv, instance=bt, strategy=strategy, trade_api=trade_api, pm=pm)
    
    signal_model.register_context(context)

    bt.init_from_config(props)

    bt.run_alpha()

    bt.save_results(folder_path=backtest_result_dir_path)