コード例 #1
0
ファイル: linalg.py プロジェクト: yuejiesong1900/jax
def triangular_solve_jvp_rule_a(g_a, ans, a, b, left_side, lower, transpose_a,
                                conjugate_a, unit_diagonal):
    m, n = b.shape[-2:]
    k = 1 if unit_diagonal else 0
    g_a = jnp.tril(g_a, k=-k) if lower else jnp.triu(g_a, k=k)
    g_a = lax.neg(g_a)
    g_a = jnp.swapaxes(g_a, -1, -2) if transpose_a else g_a
    g_a = jnp.conj(g_a) if conjugate_a else g_a
    dot = partial(lax.dot if g_a.ndim == 2 else lax.batch_matmul,
                  precision=lax.Precision.HIGHEST)

    def a_inverse(rhs):
        return triangular_solve(a, rhs, left_side, lower, transpose_a,
                                conjugate_a, unit_diagonal)

    # triangular_solve is about the same cost as matrix multplication (~n^2 FLOPs
    # for matrix/vector inputs). Order these operations in whichever order is
    # cheaper.
    if left_side:
        assert g_a.shape[-2:] == a.shape[-2:] == (m, m) and ans.shape[-2:] == (
            m, n)
        if m > n:
            return a_inverse(dot(g_a, ans))  # A^{-1} (∂A X)
        else:
            return dot(a_inverse(g_a), ans)  # (A^{-1} ∂A) X
    else:
        assert g_a.shape[-2:] == a.shape[-2:] == (n, n) and ans.shape[-2:] == (
            m, n)
        if m < n:
            return a_inverse(dot(ans, g_a))  # (X ∂A) A^{-1}
        else:
            return dot(ans, a_inverse(g_a))  # X (∂A A^{-1})
コード例 #2
0
ファイル: fft.py プロジェクト: xueeinstein/jax
def hfft(a, n=None, axis=-1, norm=None):
    conj_a = jnp.conj(a)
    _axis_check_1d('hfft', axis)
    nn = (a.shape[axis] - 1) * 2 if n is None else n
    return _fft_core_1d(
        'hfft', xla_client.FftType.IRFFT, conj_a, n=n, axis=axis,
        norm=norm) * nn
コード例 #3
0
ファイル: fft.py プロジェクト: xueeinstein/jax
def ihfft(a, n=None, axis=-1, norm=None):
    _axis_check_1d('ihfft', axis)
    nn = a.shape[axis] if n is None else n
    output = _fft_core_1d('ihfft',
                          xla_client.FftType.RFFT,
                          a,
                          n=n,
                          axis=axis,
                          norm=norm)
    return jnp.conj(output) * (1 / nn)
コード例 #4
0
ファイル: linalg.py プロジェクト: ahoenselaar/jax
def pinv(a, rcond=None):
    # Uses same algorithm as
    # https://github.com/numpy/numpy/blob/v1.17.0/numpy/linalg/linalg.py#L1890-L1979
    a = jnp.conj(a)
    if rcond is None:
        max_rows_cols = max(a.shape[-2:])
        rcond = 10. * max_rows_cols * jnp.finfo(a.dtype).eps
    rcond = jnp.asarray(rcond)
    u, s, vh = svd(a, full_matrices=False)
    # Singular values less than or equal to ``rcond * largest_singular_value``
    # are set to zero.
    cutoff = rcond[..., jnp.newaxis] * jnp.amax(
        s, axis=-1, keepdims=True, initial=-jnp.inf)
    s = jnp.where(s > cutoff, s, jnp.inf)
    res = jnp.matmul(_T(vh), jnp.divide(_T(u), s[..., jnp.newaxis]))
    return lax.convert_element_type(res, a.dtype)
コード例 #5
0
ファイル: linalg.py プロジェクト: ahoenselaar/jax
def norm(x,
         ord=None,
         axis: Union[None, Tuple[int, ...], int] = None,
         keepdims=False):
    x = _promote_arg_dtypes(jnp.asarray(x))
    x_shape = jnp.shape(x)
    ndim = len(x_shape)

    if axis is None:
        # NumPy has an undocumented behavior that admits arbitrary rank inputs if
        # `ord` is None: https://github.com/numpy/numpy/issues/14215
        if ord is None:
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)), keepdims=keepdims))
        axis = tuple(range(ndim))
    elif isinstance(axis, tuple):
        axis = tuple(canonicalize_axis(x, ndim) for x in axis)
    else:
        axis = (canonicalize_axis(axis, ndim), )

    num_axes = len(axis)
    if num_axes == 1:
        if ord is None or ord == 2:
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)),
                        axis=axis,
                        keepdims=keepdims))
        elif ord == jnp.inf:
            return jnp.amax(jnp.abs(x), axis=axis, keepdims=keepdims)
        elif ord == -jnp.inf:
            return jnp.amin(jnp.abs(x), axis=axis, keepdims=keepdims)
        elif ord == 0:
            return jnp.sum(x != 0,
                           dtype=jnp.finfo(lax.dtype(x)).dtype,
                           axis=axis,
                           keepdims=keepdims)
        elif ord == 1:
            # Numpy has a special case for ord == 1 as an optimization. We don't
            # really need the optimization (XLA could do it for us), but the Numpy
            # code has slightly different type promotion semantics, so we need a
            # special case too.
            return jnp.sum(jnp.abs(x), axis=axis, keepdims=keepdims)
        else:
            abs_x = jnp.abs(x)
            ord = lax._const(abs_x, ord)
            out = jnp.sum(abs_x**ord, axis=axis, keepdims=keepdims)
            return jnp.power(out, 1. / ord)

    elif num_axes == 2:
        row_axis, col_axis = cast(Tuple[int, ...], axis)
        if ord is None or ord in ('f', 'fro'):
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)),
                        axis=axis,
                        keepdims=keepdims))
        elif ord == 1:
            if not keepdims and col_axis > row_axis:
                col_axis -= 1
            return jnp.amax(jnp.sum(jnp.abs(x),
                                    axis=row_axis,
                                    keepdims=keepdims),
                            axis=col_axis,
                            keepdims=keepdims)
        elif ord == -1:
            if not keepdims and col_axis > row_axis:
                col_axis -= 1
            return jnp.amin(jnp.sum(jnp.abs(x),
                                    axis=row_axis,
                                    keepdims=keepdims),
                            axis=col_axis,
                            keepdims=keepdims)
        elif ord == jnp.inf:
            if not keepdims and row_axis > col_axis:
                row_axis -= 1
            return jnp.amax(jnp.sum(jnp.abs(x),
                                    axis=col_axis,
                                    keepdims=keepdims),
                            axis=row_axis,
                            keepdims=keepdims)
        elif ord == -jnp.inf:
            if not keepdims and row_axis > col_axis:
                row_axis -= 1
            return jnp.amin(jnp.sum(jnp.abs(x),
                                    axis=col_axis,
                                    keepdims=keepdims),
                            axis=row_axis,
                            keepdims=keepdims)
        elif ord in ('nuc', 2, -2):
            x = jnp.moveaxis(x, axis, (-2, -1))
            if ord == 2:
                reducer = jnp.amax
            elif ord == -2:
                reducer = jnp.amin
            else:
                reducer = jnp.sum
            y = reducer(svd(x, compute_uv=False), axis=-1)
            if keepdims:
                result_shape = list(x_shape)
                result_shape[axis[0]] = 1
                result_shape[axis[1]] = 1
                y = jnp.reshape(y, result_shape)
            return y
        else:
            raise ValueError("Invalid order '{}' for matrix norm.".format(ord))
    else:
        raise ValueError(
            "Invalid axis values ({}) for jnp.linalg.norm.".format(axis))
コード例 #6
0
ファイル: linalg.py プロジェクト: xueeinstein/jax
def _sqrtm(A):
    T, Z = schur(A, output='complex')
    sqrt_T = _sqrtm_triu(T)
    return jnp.matmul(jnp.matmul(Z, sqrt_T, precision=lax.Precision.HIGHEST),
                      jnp.conj(Z.T),
                      precision=lax.Precision.HIGHEST)
コード例 #7
0
ファイル: linalg.py プロジェクト: xueeinstein/jax
def eigh_tridiagonal(d,
                     e,
                     *,
                     eigvals_only=False,
                     select='a',
                     select_range=None,
                     tol=None):
    if not eigvals_only:
        raise NotImplementedError(
            "Calculation of eigenvectors is not implemented")

    def _sturm(alpha, beta_sq, pivmin, alpha0_perturbation, x):
        """Implements the Sturm sequence recurrence."""
        n = alpha.shape[0]
        zeros = jnp.zeros(x.shape, dtype=jnp.int32)
        ones = jnp.ones(x.shape, dtype=jnp.int32)

        # The first step in the Sturm sequence recurrence
        # requires special care if x is equal to alpha[0].
        def sturm_step0():
            q = alpha[0] - x
            count = jnp.where(q < 0, ones, zeros)
            q = jnp.where(alpha[0] == x, alpha0_perturbation, q)
            return q, count

        # Subsequent steps all take this form:
        def sturm_step(i, q, count):
            q = alpha[i] - beta_sq[i - 1] / q - x
            count = jnp.where(q <= pivmin, count + 1, count)
            q = jnp.where(q <= pivmin, jnp.minimum(q, -pivmin), q)
            return q, count

        # The first step initializes q and count.
        q, count = sturm_step0()

        # Peel off ((n-1) % blocksize) steps from the main loop, so we can run
        # the bulk of the iterations unrolled by a factor of blocksize.
        blocksize = 16
        i = 1
        peel = (n - 1) % blocksize
        unroll_cnt = peel

        def unrolled_steps(args):
            start, q, count = args
            for j in range(unroll_cnt):
                q, count = sturm_step(start + j, q, count)
            return start + unroll_cnt, q, count

        i, q, count = unrolled_steps((i, q, count))

        # Run the remaining steps of the Sturm sequence using a partially
        # unrolled while loop.
        unroll_cnt = blocksize

        def cond(iqc):
            i, q, count = iqc
            return jnp.less(i, n)

        _, _, count = lax.while_loop(cond, unrolled_steps, (i, q, count))
        return count

    alpha = jnp.asarray(d)
    beta = jnp.asarray(e)
    supported_dtypes = (jnp.float32, jnp.float64, jnp.complex64,
                        jnp.complex128)
    if alpha.dtype != beta.dtype:
        raise TypeError(
            "diagonal and off-diagonal values must have same dtype, "
            f"got {alpha.dtype} and {beta.dtype}")
    if alpha.dtype not in supported_dtypes or beta.dtype not in supported_dtypes:
        raise TypeError(
            "Only float32 and float64 inputs are supported as inputs "
            "to jax.scipy.linalg.eigh_tridiagonal, got "
            f"{alpha.dtype} and {beta.dtype}")
    n = alpha.shape[0]
    if n <= 1:
        return jnp.real(alpha)

    if jnp.issubdtype(alpha.dtype, jnp.complexfloating):
        alpha = jnp.real(alpha)
        beta_sq = jnp.real(beta * jnp.conj(beta))
        beta_abs = jnp.sqrt(beta_sq)
    else:
        beta_abs = jnp.abs(beta)
        beta_sq = jnp.square(beta)

    # Estimate the largest and smallest eigenvalues of T using the Gershgorin
    # circle theorem.
    off_diag_abs_row_sum = jnp.concatenate(
        [beta_abs[:1], beta_abs[:-1] + beta_abs[1:], beta_abs[-1:]], axis=0)
    lambda_est_max = jnp.amax(alpha + off_diag_abs_row_sum)
    lambda_est_min = jnp.amin(alpha - off_diag_abs_row_sum)
    # Upper bound on 2-norm of T.
    t_norm = jnp.maximum(jnp.abs(lambda_est_min), jnp.abs(lambda_est_max))

    # Compute the smallest allowed pivot in the Sturm sequence to avoid
    # overflow.
    finfo = np.finfo(alpha.dtype)
    one = np.ones([], dtype=alpha.dtype)
    safemin = np.maximum(one / finfo.max, (one + finfo.eps) * finfo.tiny)
    pivmin = safemin * jnp.maximum(1, jnp.amax(beta_sq))
    alpha0_perturbation = jnp.square(finfo.eps * beta_abs[0])
    abs_tol = finfo.eps * t_norm
    if tol is not None:
        abs_tol = jnp.maximum(tol, abs_tol)

    # In the worst case, when the absolute tolerance is eps*lambda_est_max and
    # lambda_est_max = -lambda_est_min, we have to take as many bisection steps
    # as there are bits in the mantissa plus 1.
    # The proof is left as an exercise to the reader.
    max_it = finfo.nmant + 1

    # Determine the indices of the desired eigenvalues, based on select and
    # select_range.
    if select == 'a':
        target_counts = jnp.arange(n, dtype=jnp.int32)
    elif select == 'i':
        if select_range[0] > select_range[1]:
            raise ValueError('Got empty index range in select_range.')
        target_counts = jnp.arange(select_range[0],
                                   select_range[1] + 1,
                                   dtype=jnp.int32)
    elif select == 'v':
        # TODO(phawkins): requires dynamic shape support.
        raise NotImplementedError("eigh_tridiagonal(..., select='v') is not "
                                  "implemented")
    else:
        raise ValueError("'select must have a value in {'a', 'i', 'v'}.")

    # Run binary search for all desired eigenvalues in parallel, starting from
    # the interval lightly wider than the estimated
    # [lambda_est_min, lambda_est_max].
    fudge = 2.1  # We widen starting interval the Gershgorin interval a bit.
    norm_slack = jnp.array(n, alpha.dtype) * fudge * finfo.eps * t_norm
    lower = lambda_est_min - norm_slack - 2 * fudge * pivmin
    upper = lambda_est_max + norm_slack + fudge * pivmin

    # Pre-broadcast the scalars used in the Sturm sequence for improved
    # performance.
    target_shape = jnp.shape(target_counts)
    lower = jnp.broadcast_to(lower, shape=target_shape)
    upper = jnp.broadcast_to(upper, shape=target_shape)
    mid = 0.5 * (upper + lower)
    pivmin = jnp.broadcast_to(pivmin, target_shape)
    alpha0_perturbation = jnp.broadcast_to(alpha0_perturbation, target_shape)

    # Start parallel binary searches.
    def cond(args):
        i, lower, _, upper = args
        return jnp.logical_and(jnp.less(i, max_it),
                               jnp.less(abs_tol, jnp.amax(upper - lower)))

    def body(args):
        i, lower, mid, upper = args
        counts = _sturm(alpha, beta_sq, pivmin, alpha0_perturbation, mid)
        lower = jnp.where(counts <= target_counts, mid, lower)
        upper = jnp.where(counts > target_counts, mid, upper)
        mid = 0.5 * (lower + upper)
        return i + 1, lower, mid, upper

    _, _, mid, _ = lax.while_loop(cond, body, (0, lower, mid, upper))
    return mid
コード例 #8
0
ファイル: linalg.py プロジェクト: xueeinstein/jax
def _cholesky(a, lower):
    a, = _promote_dtypes_inexact(jnp.asarray(a))
    l = lax_linalg.cholesky(a if lower else jnp.conj(_T(a)),
                            symmetrize_input=False)
    return l if lower else jnp.conj(_T(l))
コード例 #9
0
ファイル: linalg.py プロジェクト: yuejiesong1900/jax
def _H(x):
    return jnp.conj(_T(x))
コード例 #10
0
ファイル: linalg.py プロジェクト: varun-alla/jax
def _H(x): return jnp.conj(_T(x))
def symmetrize(x): return (x + _H(x)) / 2