コード例 #1
0
ファイル: linalg.py プロジェクト: yuejiesong1900/jax
def _lu_solve_core(lu, permutation, b, trans):
    m = lu.shape[0]
    x = jnp.reshape(b, (m, -1))
    if trans == 0:
        x = x[permutation, :]
        x = triangular_solve(lu,
                             x,
                             left_side=True,
                             lower=True,
                             unit_diagonal=True)
        x = triangular_solve(lu, x, left_side=True, lower=False)
    elif trans == 1 or trans == 2:
        conj = trans == 2
        x = triangular_solve(lu,
                             x,
                             left_side=True,
                             lower=False,
                             transpose_a=True,
                             conjugate_a=conj)
        x = triangular_solve(lu,
                             x,
                             left_side=True,
                             lower=True,
                             unit_diagonal=True,
                             transpose_a=True,
                             conjugate_a=conj)
        x = x[jnp.argsort(permutation), :]
    else:
        raise ValueError(
            "'trans' value must be 0, 1, or 2, got {}".format(trans))
    return lax.reshape(x, b.shape)
コード例 #2
0
ファイル: signal.py プロジェクト: jbampton/jax
def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
        detrend='constant', return_onesided=True, scaling='density',
        axis=-1, average='mean'):
  freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft,
                                  detrend, return_onesided, scaling, axis,
                                  mode='psd')
  if y is not None:
    Pxy = Pxy + 0j  # Ensure complex output when x is not y

  # Average over windows.
  if Pxy.ndim >= 2 and Pxy.size > 0:
    if Pxy.shape[-1] > 1:
      if average == 'median':
        bias = signal_helper._median_bias(Pxy.shape[-1]).astype(Pxy.dtype)
        if jnp.iscomplexobj(Pxy):
          Pxy = (jnp.median(jnp.real(Pxy), axis=-1)
                  + 1j * jnp.median(jnp.imag(Pxy), axis=-1))
        else:
          Pxy = jnp.median(Pxy, axis=-1)
        Pxy /= bias
      elif average == 'mean':
        Pxy = Pxy.mean(axis=-1)
      else:
        raise ValueError(f'average must be "median" or "mean", got {average}')
    else:
      Pxy = jnp.reshape(Pxy, Pxy.shape[:-1])

  return freqs, Pxy
コード例 #3
0
ファイル: linalg.py プロジェクト: ahoenselaar/jax
def norm(x,
         ord=None,
         axis: Union[None, Tuple[int, ...], int] = None,
         keepdims=False):
    x = _promote_arg_dtypes(jnp.asarray(x))
    x_shape = jnp.shape(x)
    ndim = len(x_shape)

    if axis is None:
        # NumPy has an undocumented behavior that admits arbitrary rank inputs if
        # `ord` is None: https://github.com/numpy/numpy/issues/14215
        if ord is None:
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)), keepdims=keepdims))
        axis = tuple(range(ndim))
    elif isinstance(axis, tuple):
        axis = tuple(canonicalize_axis(x, ndim) for x in axis)
    else:
        axis = (canonicalize_axis(axis, ndim), )

    num_axes = len(axis)
    if num_axes == 1:
        if ord is None or ord == 2:
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)),
                        axis=axis,
                        keepdims=keepdims))
        elif ord == jnp.inf:
            return jnp.amax(jnp.abs(x), axis=axis, keepdims=keepdims)
        elif ord == -jnp.inf:
            return jnp.amin(jnp.abs(x), axis=axis, keepdims=keepdims)
        elif ord == 0:
            return jnp.sum(x != 0,
                           dtype=jnp.finfo(lax.dtype(x)).dtype,
                           axis=axis,
                           keepdims=keepdims)
        elif ord == 1:
            # Numpy has a special case for ord == 1 as an optimization. We don't
            # really need the optimization (XLA could do it for us), but the Numpy
            # code has slightly different type promotion semantics, so we need a
            # special case too.
            return jnp.sum(jnp.abs(x), axis=axis, keepdims=keepdims)
        else:
            abs_x = jnp.abs(x)
            ord = lax._const(abs_x, ord)
            out = jnp.sum(abs_x**ord, axis=axis, keepdims=keepdims)
            return jnp.power(out, 1. / ord)

    elif num_axes == 2:
        row_axis, col_axis = cast(Tuple[int, ...], axis)
        if ord is None or ord in ('f', 'fro'):
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)),
                        axis=axis,
                        keepdims=keepdims))
        elif ord == 1:
            if not keepdims and col_axis > row_axis:
                col_axis -= 1
            return jnp.amax(jnp.sum(jnp.abs(x),
                                    axis=row_axis,
                                    keepdims=keepdims),
                            axis=col_axis,
                            keepdims=keepdims)
        elif ord == -1:
            if not keepdims and col_axis > row_axis:
                col_axis -= 1
            return jnp.amin(jnp.sum(jnp.abs(x),
                                    axis=row_axis,
                                    keepdims=keepdims),
                            axis=col_axis,
                            keepdims=keepdims)
        elif ord == jnp.inf:
            if not keepdims and row_axis > col_axis:
                row_axis -= 1
            return jnp.amax(jnp.sum(jnp.abs(x),
                                    axis=col_axis,
                                    keepdims=keepdims),
                            axis=row_axis,
                            keepdims=keepdims)
        elif ord == -jnp.inf:
            if not keepdims and row_axis > col_axis:
                row_axis -= 1
            return jnp.amin(jnp.sum(jnp.abs(x),
                                    axis=col_axis,
                                    keepdims=keepdims),
                            axis=row_axis,
                            keepdims=keepdims)
        elif ord in ('nuc', 2, -2):
            x = jnp.moveaxis(x, axis, (-2, -1))
            if ord == 2:
                reducer = jnp.amax
            elif ord == -2:
                reducer = jnp.amin
            else:
                reducer = jnp.sum
            y = reducer(svd(x, compute_uv=False), axis=-1)
            if keepdims:
                result_shape = list(x_shape)
                result_shape[axis[0]] = 1
                result_shape[axis[1]] = 1
                y = jnp.reshape(y, result_shape)
            return y
        else:
            raise ValueError("Invalid order '{}' for matrix norm.".format(ord))
    else:
        raise ValueError(
            "Invalid axis values ({}) for jnp.linalg.norm.".format(axis))