コード例 #1
0
def main():
    p = OptionParser(__doc__)
    p.add_option("--order",
                 help="The order to plot the tracks, comma-separated")
    opts, args, iopts = p.set_image_options()

    if len(args) != 3:
        sys.exit(not p.print_help())

    chr, sizes, datadir = args
    order = opts.order
    hlsuffix = opts.hlsuffix
    if order:
        order = order.split(",")
    sizes = Sizes(sizes)
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    canvas = (.12, .35, .8, .35)
    chr_size = sizes.get_size(chr)
    Coverage(fig,
             root,
             canvas,
             chr, (0, chr_size),
             datadir,
             order=order,
             hlsuffix=hlsuffix)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #2
0
ファイル: str.py プロジェクト: zhaotao1987/jcvi
def likelihood2(args):
    """
    %prog likelihood2 100_20.json

    Plot the likelihood surface and marginal distributions.
    """
    from matplotlib import gridspec

    p = OptionParser(likelihood2.__doc__)
    opts, args, iopts = p.set_image_options(args,
                                            figsize="10x5",
                                            style="white",
                                            cmap="coolwarm")

    if len(args) != 1:
        sys.exit(not p.print_help())

    jsonfile, = args
    fig = plt.figure(figsize=(iopts.w, iopts.h))
    gs = gridspec.GridSpec(2, 2)
    ax1 = fig.add_subplot(gs[:, 0])
    ax2 = fig.add_subplot(gs[0, 1])
    ax3 = fig.add_subplot(gs[1, 1])
    plt.tight_layout(pad=3)
    pf = plot_panel(jsonfile, ax1, ax2, ax3, opts.cmap)

    root = fig.add_axes([0, 0, 1, 1])
    normalize_axes(root)

    image_name = "likelihood2.{}.".format(pf) + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #3
0
ファイル: coverage.py プロジェクト: rrane/jcvi
def main():
    p = OptionParser(__doc__)
    p.add_option("--order",
                help="The order to plot the tracks, comma-separated")
    opts, args, iopts = p.set_image_options()

    if len(args) != 3:
        sys.exit(not p.print_help())

    chr, sizes, datadir = args
    order = opts.order
    hlsuffix = opts.hlsuffix
    if order:
        order = order.split(",")
    sizes = Sizes(sizes)
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    canvas = (.12, .35, .8, .35)
    chr_size = sizes.get_size(chr)
    c = Coverage(fig, root, canvas, chr, (0, chr_size), datadir,
                 order=order, hlsuffix=hlsuffix)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = chr + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #4
0
def resample(args):
    """
    %prog resample yellow-catfish-resample.txt medicago-resample.txt

    Plot ALLMAPS performance across resampled real data.
    """
    p = OptionParser(resample.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x4", dpi=300)

    if len(args) != 2:
        sys.exit(not p.print_help())

    dataA, dataB = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    A = fig.add_axes([0.1, 0.18, 0.32, 0.64])
    B = fig.add_axes([0.6, 0.18, 0.32, 0.64])
    dataA = import_data(dataA)
    dataB = import_data(dataB)
    xlabel = "Fraction of markers"
    ylabels = ("Anchor rate", "Runtime (m)")
    legend = ("anchor rate", "runtime")
    subplot_twinx(A, dataA, xlabel, ylabels, title="Yellow catfish", legend=legend)
    subplot_twinx(B, dataB, xlabel, ylabels, title="Medicago", legend=legend)

    labels = ((0.04, 0.92, "A"), (0.54, 0.92, "B"))
    panel_labels(root, labels)

    normalize_axes(root)
    image_name = "resample." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #5
0
def main():
    p = OptionParser(__doc__)
    p.add_option(
        "--customfont",
        default="Airswing.ttf",
        choices=available_fonts,
        help="Custom font name",
    )
    p.add_option("--color", default="limegreen", help="Font color")
    p.add_option("--size", default=36, type="int", help="Font size")
    opts, args, iopts = p.set_image_options(figsize="2x1", dpi=60, format="png")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (text,) = args

    plt.rcdefaults()
    fig = plt.figure(1, (iopts.w, iopts.h))
    ax = fig.add_axes([0, 0, 1, 1])

    ax.text(0.5, 0.5, text, color=opts.color, ha="center", va="center")
    fontprop(ax, opts.customfont, size=opts.size)

    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.set_axis_off()

    image_name = text + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #6
0
ファイル: karyotype.py プロジェクト: tw7649116/jcvi
def main():
    p = OptionParser(__doc__)
    p.add_option("--nocircles",
                 default=False,
                 action="store_true",
                 help="Do not plot chromosome circles")
    opts, args, iopts = p.set_image_options(figsize="8x7")

    if len(args) != 2:
        sys.exit(not p.print_help())

    seqidsfile, layoutfile = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig,
              root,
              seqidsfile,
              layoutfile,
              plot_circles=(not opts.nocircles))

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #7
0
def main():
    p = OptionParser(__doc__)
    p.add_option("--switch",
                 help="Rename the seqid with two-column file [default: %default]")
    p.add_option("--tree",
                 help="Display trees on the bottom of the figure [default: %default]")
    p.add_option("--extra", help="Extra features in BED format")
    opts, args, iopts = p.set_image_options(figsize="8x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    datafile, bedfile, layoutfile = args
    switch = opts.switch
    tree = opts.tree

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(fig, root, datafile, bedfile, layoutfile,
            switch=switch, tree=tree, extra_features=opts.extra)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #8
0
def ploidy(args):
    """
    %prog ploidy b1.blocks all.bed b1.layout

    Build a figure that illustrates the WGD history of the vanilla genome.
    """
    p = OptionParser(ploidy.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="12x6")

    if len(args) != 3:
        sys.exit(not p.print_help())

    blocksfile, bedfile, blockslayout = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    draw_ploidy(fig, root, blocksfile, bedfile, blockslayout)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "vanilla-karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #9
0
def regression(args):
    """
    %prog regression postgenomic-s.tsv

    Plot chronological vs. predicted age.
    """
    p = OptionParser(regression.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (tsvfile, ) = args
    df = pd.read_csv(tsvfile, sep="\t")
    chrono = "Chronological age (yr)"
    pred = "Predicted age (yr)"
    resdf = pd.DataFrame({
        chrono: df["hli_calc_age_sample_taken"],
        pred: df["Predicted Age"]
    })
    g = sns.jointplot(chrono,
                      pred,
                      resdf,
                      joint_kws={"s": 6},
                      xlim=(0, 100),
                      ylim=(0, 80))
    g.fig.set_figwidth(iopts.w)
    g.fig.set_figheight(iopts.h)
    outfile = tsvfile.rsplit(".", 1)[0] + ".regression.pdf"
    savefig(outfile)
コード例 #10
0
ファイル: misc.py プロジェクト: lqsae/jcvi
def pomegranate(args):
    """
    %prog cotton seqids karyotype.layout mcscan.out all.bed synteny.layout

    Build a figure that calls graphics.karyotype to illustrate the high ploidy
    of WGD history of pineapple genome. The script calls both graphics.karyotype
    and graphic.synteny.
    """
    p = OptionParser(pomegranate.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="9x7")

    if len(args) != 5:
        sys.exit(not p.print_help())

    seqidsfile, klayout, datafile, bedfile, slayout = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)
    Synteny(fig, root, datafile, bedfile, slayout)

    # legend showing the orientation of the genes
    draw_gene_legend(root, 0.42, 0.52, 0.48)

    labels = ((0.04, 0.96, "A"), (0.04, 0.52, "B"))
    panel_labels(root, labels)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "pomegranate-karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #11
0
ファイル: allmaps.py プロジェクト: JinfengChen/jcvi
def resample(args):
    """
    %prog resample yellow-catfish-resample.txt medicago-resample.txt

    Plot ALLMAPS performance across resampled real data.
    """
    p = OptionParser(resample.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x4", dpi=300)

    if len(args) != 2:
        sys.exit(not p.print_help())

    dataA, dataB = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    A = fig.add_axes([.1, .18, .32, .64])
    B = fig.add_axes([.6, .18, .32, .64])
    dataA = import_data(dataA)
    dataB = import_data(dataB)
    xlabel = "Fraction of markers"
    ylabels = ("Anchor rate", "Runtime (m)")
    legend = ("anchor rate", "runtime")
    subplot_twinx(A, dataA, xlabel, ylabels,
                     title="Yellow catfish", legend=legend)
    subplot_twinx(B, dataB, xlabel, ylabels,
                     title="Medicago", legend=legend)

    labels = ((.04, .92, "A"), (.54, .92, "B"))
    panel_labels(root, labels)

    normalize_axes(root)
    image_name = "resample." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #12
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def pomegranate(args):
    """
    %prog cotton seqids karyotype.layout mcscan.out all.bed synteny.layout

    Build a figure that calls graphics.karyotype to illustrate the high ploidy
    of WGD history of pineapple genome. The script calls both graphics.karyotype
    and graphic.synteny.
    """
    p = OptionParser(pomegranate.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="9x7")

    if len(args) != 5:
        sys.exit(not p.print_help())

    seqidsfile, klayout, datafile, bedfile, slayout = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)
    Synteny(fig, root, datafile, bedfile, slayout)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .42, .52, .48)

    labels = ((.04, .96, 'A'), (.04, .52, 'B'))
    panel_labels(root, labels)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "pomegranate-karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #13
0
ファイル: synteny.py プロジェクト: xuanblo/jcvi
def main():
    p = OptionParser(__doc__)
    p.add_option("--switch",
                 help="Rename the seqid with two-column file [default: %default]")
    p.add_option("--tree",
                 help="Display trees on the bottom of the figure [default: %default]")
    p.add_option("--extra", help="Extra features in BED format")
    p.add_option("--scalebar", default=False, action="store_true",
                 help="Add scale bar to the plot")
    opts, args, iopts = p.set_image_options(figsize="8x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    datafile, bedfile, layoutfile = args
    switch = opts.switch
    tree = opts.tree

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(fig, root, datafile, bedfile, layoutfile,
            switch=switch, tree=tree, extra_features=opts.extra,
            scalebar=opts.scalebar)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #14
0
ファイル: str.py プロジェクト: wenbinmei/jcvi
def allelefreq(args):
    """
    %prog allelefreq HD,DM1,SCA1,SCA17

    Plot the allele frequencies of some STRs.
    """
    p = OptionParser(allelefreq.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="10x10")

    if len(args) != 1:
        sys.exit(not p.print_help())

    loci, = args
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2,
                                                 nrows=2,
                                                 figsize=(iopts.w, iopts.h))
    plt.tight_layout(pad=4)
    treds, df = read_treds()
    df = df.set_index(["abbreviation"])

    for ax, locus in zip((ax1, ax2, ax3, ax4), loci.split(",")):
        plot_allelefreq(ax, df, locus)

    root = fig.add_axes([0, 0, 1, 1])
    pad = .03
    panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B"),
                        (pad / 2, 1 / 2., "C"), (1 / 2., 1 / 2., "D")))
    normalize_axes(root)

    image_name = "allelefreq." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #15
0
ファイル: cnv.py プロジェクト: xuanblo/jcvi
def coverage(args):
    """
    %prog coverage *.coverage

    Plot coverage along chromosome. The coverage file can be generated with:
    $ samtools depth a.bam > a.coverage

    The plot is a simple line plot using matplotlib.
    """
    from jcvi.graphics.base import savefig

    p = OptionParser(coverage.__doc__)
    opts, args, iopts = p.set_image_options(args, format="png")

    if len(args) != 1:
        sys.exit(not p.print_help())

    covfile, = args
    df = pd.read_csv(covfile, sep='\t', names=["Ref", "Position", "Depth"])

    xlabel, ylabel = "Position", "Depth"
    df.plot(xlabel, ylabel, color='g')

    image_name = covfile + "." + iopts.format
    savefig(image_name)
コード例 #16
0
def main(args):
    """
    %prog table.csv

    Render a table on canvas. Input is a CSV file.
    """
    p = OptionParser(main.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="7x7")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (csvfile, ) = args
    pf = csvfile.rsplit(".", 1)[0]

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    csv_table = CsvTable(csvfile)

    draw_table(root, csv_table)

    normalize_axes(root)

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #17
0
ファイル: cnv.py プロジェクト: guo-cheng/jcvi
def coverage(args):
    """
    %prog coverage *.coverage

    Plot coverage along chromosome. The coverage file can be generated with:
    $ samtools depth a.bam > a.coverage

    The plot is a simple line plot using matplotlib.
    """
    from jcvi.graphics.base import savefig

    p = OptionParser(coverage.__doc__)
    opts, args, iopts = p.set_image_options(args, format="png")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (covfile, ) = args
    df = pd.read_csv(covfile, sep="\t", names=["Ref", "Position", "Depth"])

    xlabel, ylabel = "Position", "Depth"
    df.plot(xlabel, ylabel, color="g")

    image_name = covfile + "." + iopts.format
    savefig(image_name)
コード例 #18
0
def wgd(args):
    """
    %prog wgd vplanifoliaA_blocks.bed vplanifoliaA.sizes

    Create a wgd figure.
    """
    from jcvi.graphics.chromosome import draw_chromosomes

    p = OptionParser(synteny.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    (bedfile, sizesfile) = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    ax1 = fig.add_axes([0, 0, 1, 1])

    title = r"Genome duplication $\alpha^{O}$ event in $\textit{Vanilla}$"
    draw_chromosomes(
        ax1,
        bedfile,
        sizes=sizesfile,
        iopts=iopts,
        mergedist=200000,
        winsize=50000,
        imagemap=False,
        gauge=True,
        legend=False,
        title=title,
    )

    normalize_axes([ax1])

    image_name = "wgd.pdf"
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #19
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def birch(args):
    """
    %prog birch seqids layout

    Plot birch macro-synteny, with an embedded phylogenetic tree to the right.
    """
    p = OptionParser(birch.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x6")

    if len(args) != 2:
        sys.exit(not p.print_help())

    seqids, layout = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    K = Karyotype(fig, root, seqids, layout)
    L = K.layout

    xs = .79
    dt = dict(rectangle=False, circle=False)
    # Embed a phylogenetic tree to the right
    coords = {}
    coords["Amborella"] = (xs, L[0].y)
    coords["Vitis"] = (xs, L[1].y)
    coords["Prunus"] = (xs, L[2].y)
    coords["Betula"] = (xs, L[3].y)
    coords["Populus"] = (xs, L[4].y)
    coords["Arabidopsis"] = (xs, L[5].y)
    coords["fabids"] = join_nodes(root, coords, "Prunus", "Betula", xs, **dt)
    coords["malvids"] = join_nodes(root, coords, \
                                   "Populus", "Arabidopsis", xs, **dt)
    coords["rosids"] = join_nodes(root, coords, "fabids", "malvids", xs, **dt)
    coords["eudicots"] = join_nodes(root, coords, "rosids", "Vitis", xs, **dt)
    coords["angiosperm"] = join_nodes(root, coords, \
                                      "eudicots", "Amborella", xs, **dt)

    # Show branch length
    branch_length(root, coords["Amborella"], coords["angiosperm"], ">160.0")
    branch_length(root, coords["eudicots"], coords["angiosperm"],
                  ">78.2", va="top")
    branch_length(root, coords["Vitis"], coords["eudicots"], "138.5")
    branch_length(root, coords["rosids"], coords["eudicots"],
                  "19.8", va="top")
    branch_length(root, coords["Prunus"], coords["fabids"],
                  "104.2", ha="right", va="top")
    branch_length(root, coords["Arabidopsis"], coords["malvids"],
                  "110.2", va="top")
    branch_length(root, coords["fabids"], coords["rosids"],
                  "19.8", ha="right", va="top")
    branch_length(root, coords["malvids"], coords["rosids"],
                  "8.5", va="top")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "birch"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #20
0
ファイル: ks.py プロジェクト: JinfengChen/jcvi
def report(args):
    '''
    %prog report ksfile

    generate a report given a Ks result file (as produced by synonymous_calc.py).
    describe the median Ks, Ka values, as well as the distribution in stem-leaf plot
    '''
    from jcvi.utils.cbook import SummaryStats
    from jcvi.graphics.histogram import stem_leaf_plot

    p = OptionParser(report.__doc__)
    p.add_option("--pdf", default=False, action="store_true",
            help="Generate graphic output for the histogram [default: %default]")
    p.add_option("--components", default=1, type="int",
            help="Number of components to decompose peaks [default: %default]")
    add_plot_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="5x5")

    if len(args) !=  1:
        sys.exit(not p.print_help())

    ks_file, = args
    data = read_ks_file(ks_file)
    ks_min = opts.vmin
    ks_max = opts.vmax
    bins = opts.bins

    for f in fields.split(",")[1:]:
        columndata = [getattr(x, f) for x in data]
        ks = ("ks" in f)
        if not ks:
            continue

        columndata = [x for x in columndata if ks_min <= x <= ks_max]

        st = SummaryStats(columndata)
        title = "{0} ({1}): ".format(descriptions[f], ks_file)
        title += "Median:{0:.3f} (1Q:{1:.3f}|3Q:{2:.3f}||".\
                format(st.median, st.firstq, st.thirdq)
        title += "Mean:{0:.3f}|Std:{1:.3f}||N:{2})".\
                format(st.mean, st.sd, st.size)

        tbins = (0, ks_max, bins) if ks else (0, .6, 10)
        digit = 2 if (ks_max * 1. / bins) < .1 else 1
        stem_leaf_plot(columndata, *tbins, digit=digit, title=title)

    if not opts.pdf:
        return


    components = opts.components
    data = [x.ng_ks for x in data]
    data = [x for x in data if ks_min <= x <= ks_max]

    fig = plt.figure(1, (iopts.w, iopts.h))
    ax = fig.add_axes([.12, .1, .8, .8])
    kp = KsPlot(ax, ks_max, opts.bins, legendp=opts.legendp)
    kp.add_data(data, components, fill=opts.fill)
    kp.draw(title=opts.title)
コード例 #21
0
def oropetium(args):
    """
    %prog oropetium mcscan.out all.bed layout switch.ids

    Build a composite figure that calls graphis.synteny.
    """
    p = OptionParser(oropetium.__doc__)
    p.add_option("--extra", help="Extra features in BED format")
    opts, args, iopts = p.set_image_options(args, figsize="9x6")

    if len(args) != 4:
        sys.exit(not p.print_help())

    datafile, bedfile, slayout, switch = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(
        fig, root, datafile, bedfile, slayout, switch=switch, extra_features=opts.extra
    )

    # legend showing the orientation of the genes
    draw_gene_legend(root, 0.4, 0.57, 0.74, text=True, repeat=True)

    # On the left panel, make a species tree
    fc = "lightslategrey"

    coords = {}
    xs, xp = 0.16, 0.03
    coords["oropetium"] = (xs, 0.7)
    coords["setaria"] = (xs, 0.6)
    coords["sorghum"] = (xs, 0.5)
    coords["rice"] = (xs, 0.4)
    coords["brachypodium"] = (xs, 0.3)
    xs -= xp
    coords["Panicoideae"] = join_nodes(root, coords, "setaria", "sorghum", xs)
    xs -= xp
    coords["BEP"] = join_nodes(root, coords, "rice", "brachypodium", xs)
    coords["PACMAD"] = join_nodes(root, coords, "oropetium", "Panicoideae", xs)
    xs -= xp
    coords["Poaceae"] = join_nodes(root, coords, "BEP", "PACMAD", xs)

    # Names of the internal nodes
    for tag in ("BEP", "Poaceae"):
        nx, ny = coords[tag]
        nx, ny = nx - 0.005, ny - 0.02
        root.text(nx, ny, tag, rotation=90, ha="right", va="top", color=fc)
    for tag in ("PACMAD",):
        nx, ny = coords[tag]
        nx, ny = nx - 0.005, ny + 0.02
        root.text(nx, ny, tag, rotation=90, ha="right", va="bottom", color=fc)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "oropetium"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #22
0
ファイル: str.py プロジェクト: wenbinmei/jcvi
def compare2(args):
    """
    %prog compare2

    Compare performances of various variant callers on simulated STR datasets.
    """
    p = OptionParser(compare2.__doc__)
    p.add_option('--maxinsert',
                 default=300,
                 type="int",
                 help="Maximum number of repeats")
    add_simulate_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="10x5")

    if len(args) != 0:
        sys.exit(not p.print_help())

    depth = opts.depth
    readlen = opts.readlen
    distance = opts.distance
    max_insert = opts.maxinsert
    fig, (ax1, ax2) = plt.subplots(ncols=2,
                                   nrows=1,
                                   figsize=(iopts.w, iopts.h))
    plt.tight_layout(pad=2)

    # ax1: lobSTR vs TREDPARSE with haploid model
    lobstr_results = parse_results("lobstr_results_homo.txt")
    tredparse_results = parse_results("tredparse_results_homo.txt")
    title = SIMULATED_HAPLOID + \
            r" ($D=%s\times, L=%dbp, V=%dbp$)" % (depth, readlen, distance)
    plot_compare(ax1,
                 title,
                 tredparse_results,
                 lobstr_results,
                 max_insert=max_insert)

    # ax2: lobSTR vs TREDPARSE with diploid model
    lobstr_results = parse_results("lobstr_results_het.txt", exclude=20)
    tredparse_results = parse_results("tredparse_results_het.txt", exclude=20)
    title = SIMULATED_DIPLOID + \
            r" ($D=%s\times, L=%dbp, V=%dbp$)" % (depth, readlen, distance)
    plot_compare(ax2,
                 title,
                 tredparse_results,
                 lobstr_results,
                 max_insert=max_insert)

    for ax in (ax1, ax2):
        ax.set_xlim(0, max_insert)
        ax.set_ylim(0, max_insert)

    root = fig.add_axes([0, 0, 1, 1])
    pad = .03
    panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B")))
    normalize_axes(root)

    image_name = "tredparse." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #23
0
ファイル: misc.py プロジェクト: lqsae/jcvi
def utricularia(args):
    from jcvi.graphics.synteny import main as synteny_main

    p = OptionParser(synteny_main.__doc__)
    p.add_option("--switch", help="Rename the seqid with two-column file")
    opts, args, iopts = p.set_image_options(args, figsize="8x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    datafile, bedfile, layoutfile = args
    switch = opts.switch

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    s = Synteny(fig,
                root,
                datafile,
                bedfile,
                layoutfile,
                loc_label=False,
                switch=switch)
    light = "lightslategrey"
    RoundRect(root, (0.02, 0.69), 0.96, 0.24, fill=False, lw=2, ec=light)
    RoundRect(root, (0.02, 0.09), 0.96, 0.48, fill=False, lw=2, ec=light)
    za, zb = s.layout[1].ratio, s.layout[-1].ratio  # zoom level
    if za != 1:
        root.text(
            0.96,
            0.89,
            "{}x zoom".format(za).replace(".0x", "x"),
            color=light,
            ha="right",
            va="center",
            size=14,
        )
    if zb != 1:
        root.text(
            0.96,
            0.12,
            "{}x zoom".format(zb).replace(".0x", "x"),
            color=light,
            ha="right",
            va="center",
            size=14,
        )

    # legend showing the orientation of the genes
    draw_gene_legend(root, 0.22, 0.3, 0.64, text=True)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #24
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def oropetium(args):
    """
    %prog oropetium mcscan.out all.bed layout switch.ids

    Build a composite figure that calls graphis.synteny.
    """
    p = OptionParser(oropetium.__doc__)
    p.add_option("--extra", help="Extra features in BED format")
    opts, args, iopts = p.set_image_options(args, figsize="9x6")

    if len(args) != 4:
        sys.exit(not p.print_help())

    datafile, bedfile, slayout, switch = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(fig, root, datafile, bedfile, slayout,
            switch=switch, extra_features=opts.extra)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .4, .57, .74, text=True, repeat=True)

    # On the left panel, make a species tree
    fc = 'lightslategrey'

    coords = {}
    xs, xp = .16, .03
    coords["oropetium"] = (xs, .7)
    coords["setaria"] = (xs, .6)
    coords["sorghum"] = (xs, .5)
    coords["rice"] = (xs, .4)
    coords["brachypodium"] = (xs, .3)
    xs -= xp
    coords["Panicoideae"] = join_nodes(root, coords, "setaria", "sorghum", xs)
    xs -= xp
    coords["BEP"] = join_nodes(root, coords, "rice", "brachypodium", xs)
    coords["PACMAD"] = join_nodes(root, coords, "oropetium", "Panicoideae", xs)
    xs -= xp
    coords["Poaceae"] = join_nodes(root, coords, "BEP", "PACMAD", xs)

    # Names of the internal nodes
    for tag in ("BEP", "Poaceae"):
        nx, ny = coords[tag]
        nx, ny = nx - .005, ny - .02
        root.text(nx, ny, tag, rotation=90, ha="right", va="top", color=fc)
    for tag in ("PACMAD",):
        nx, ny = coords[tag]
        nx, ny = nx - .005, ny + .02
        root.text(nx, ny, tag, rotation=90, ha="right", va="bottom", color=fc)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "oropetium"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #25
0
ファイル: misc.py プロジェクト: biologyguy/jcvi
def litchi(args):
    """
    %prog litchi mcscan.out all.bed layout switch.ids

    Build a composite figure that calls graphis.synteny.
    """
    p = OptionParser(litchi.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="9x6")

    if len(args) != 4:
        sys.exit(not p.print_help())

    datafile, bedfile, slayout, switch = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(fig, root, datafile, bedfile, slayout, switch=switch)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .4, .7, .82)

    # On the left panel, make a species tree
    fc = 'lightslategrey'

    coords = {}
    xs, xp = .16, .03
    coords["lychee"] = (xs, .37)
    coords["clementine"] = (xs, .5)
    coords["cacao"] = (xs, .6)
    coords["strawberry"] = (xs, .7)
    coords["grape"] = (xs, .8)
    xs -= xp
    coords["Sapindales"] = join_nodes(root, coords, "clementine", "lychee", xs)
    xs -= xp
    coords["Rosid-II"] = join_nodes(root, coords, "cacao", "Sapindales", xs)
    xs -= xp
    coords["Rosid"] = join_nodes(root, coords, "strawberry", "Rosid-II", xs)
    xs -= xp
    coords["crown"] = join_nodes(root,
                                 coords,
                                 "grape",
                                 "Rosid",
                                 xs,
                                 circle=False)

    # Names of the internal nodes
    for tag in ("Rosid", "Rosid-II", "Sapindales"):
        nx, ny = coords[tag]
        nx, ny = nx - .01, ny - .02
        root.text(nx, ny, tag, rotation=90, ha="right", va="top", color=fc)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "litchi"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #26
0
ファイル: str.py プロジェクト: wenbinmei/jcvi
def compare(args):
    """
    %prog compare Evaluation.csv

    Compare performances of various variant callers on simulated STR datasets.
    """
    p = OptionParser(compare.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="10x10")

    if len(args) != 1:
        sys.exit(not p.print_help())

    datafile, = args
    pf = datafile.rsplit(".", 1)[0]
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2,
                                                 nrows=2,
                                                 figsize=(iopts.w, iopts.h))
    plt.tight_layout(pad=3)

    bbox = {'facecolor': 'tomato', 'alpha': .2, 'ec': 'w'}
    pad = 2

    # Read benchmark data
    df = pd.read_csv("Evaluation.csv")
    truth = df["Truth"]
    axes = (ax1, ax2, ax3, ax4)
    progs = ("Manta", "Isaac", "GATK", "lobSTR")
    markers = ("bx-", "yo-", "md-", "c+-")

    for ax, prog, marker in zip(axes, progs, markers):
        ax.plot(truth, df[prog], marker)
        ax.plot(truth, truth, 'k--')  # to show diagonal
        ax.axhline(infected_thr, color='tomato')
        ax.text(max(truth) - pad,
                infected_thr + pad,
                'Risk threshold',
                bbox=bbox,
                ha="right")
        ax.axhline(ref_thr, color='tomato')
        ax.text(max(truth) - pad,
                ref_thr - pad,
                'Reference repeat count',
                bbox=bbox,
                ha="right",
                va="top")
        ax.set_title(SIMULATED_HAPLOID)
        ax.set_xlabel(r'Num of CAG repeats inserted ($\mathit{h}$)')
        ax.set_ylabel('Num of CAG repeats called')
        ax.legend([prog, 'Truth'], loc='best')

    root = fig.add_axes([0, 0, 1, 1])
    pad = .03
    panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B"),
                        (pad / 2, 1 / 2., "C"), (1 / 2., 1 / 2., "D")))
    normalize_axes(root)

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #27
0
def report(args):
    '''
    %prog report ksfile

    generate a report given a Ks result file (as produced by synonymous_calc.py).
    describe the median Ks, Ka values, as well as the distribution in stem-leaf plot
    '''
    from jcvi.utils.cbook import SummaryStats
    from jcvi.graphics.histogram import stem_leaf_plot

    p = OptionParser(report.__doc__)
    p.add_option("--pdf", default=False, action="store_true",
            help="Generate graphic output for the histogram [default: %default]")
    p.add_option("--components", default=1, type="int",
            help="Number of components to decompose peaks [default: %default]")
    add_plot_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="5x5")

    if len(args) !=  1:
        sys.exit(not p.print_help())

    ks_file, = args
    data = KsFile(ks_file)
    ks_min = opts.vmin
    ks_max = opts.vmax
    bins = opts.bins

    for f in fields.split(",")[1:]:
        columndata = [getattr(x, f) for x in data]
        ks = ("ks" in f)
        if not ks:
            continue

        columndata = [x for x in columndata if ks_min <= x <= ks_max]

        st = SummaryStats(columndata)
        title = "{0} ({1}): ".format(descriptions[f], ks_file)
        title += "Median:{0:.3f} (1Q:{1:.3f}|3Q:{2:.3f}||".\
                format(st.median, st.firstq, st.thirdq)
        title += "Mean:{0:.3f}|Std:{1:.3f}||N:{2})".\
                format(st.mean, st.sd, st.size)

        tbins = (0, ks_max, bins) if ks else (0, .6, 10)
        digit = 2 if (ks_max * 1. / bins) < .1 else 1
        stem_leaf_plot(columndata, *tbins, digit=digit, title=title)

    if not opts.pdf:
        return

    components = opts.components
    data = [x.ng_ks for x in data]
    data = [x for x in data if ks_min <= x <= ks_max]

    fig = plt.figure(1, (iopts.w, iopts.h))
    ax = fig.add_axes([.12, .1, .8, .8])
    kp = KsPlot(ax, ks_max, opts.bins, legendp=opts.legendp)
    kp.add_data(data, components, fill=opts.fill, fitted=opts.fit)
    kp.draw(title=opts.title)
コード例 #28
0
def snpplot(args):
    """
    %prog counts.cdt

    Illustrate the histogram per SNP site.
    """
    p = OptionParser(snpplot.__doc__)
    opts, args, iopts = p.set_image_options(args, format="png")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (datafile,) = args
    # Read in CDT file
    fp = open(datafile)
    next(fp)
    next(fp)
    data = []
    for row in fp:
        atoms = row.split()[4:]
        nval = len(atoms)
        values = [float(x) for x in atoms]
        # normalize
        values = [x * 1.0 / sum(values) for x in values]
        data.append(values)

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    xmin, xmax = 0.1, 0.9
    ymin, ymax = 0.1, 0.9
    yinterval = (ymax - ymin) / len(data)
    colors = "rbg" if nval == 3 else ["lightgray"] + list("rbg")
    ystart = ymax
    for d in data:
        xstart = xmin
        for dd, c in zip(d, colors):
            xend = xstart + (xmax - xmin) * dd
            root.plot((xstart, xend), (ystart, ystart), "-", color=c)
            xstart = xend
        ystart -= yinterval

    root.text(
        0.05,
        0.5,
        "{0} LMD50 SNPs".format(len(data)),
        ha="center",
        va="center",
        rotation=90,
        color="lightslategray",
    )

    for x, t, c in zip((0.3, 0.5, 0.7), ("REF", "ALT", "HET"), "rbg"):
        root.text(x, 0.95, t, color=c, ha="center", va="center")
    normalize_axes(root)

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #29
0
ファイル: misc.py プロジェクト: biologyguy/jcvi
def mtdotplots(args):
    """
    %prog mtdotplots Mt3.5 Mt4.0 medicago.medicago.lifted.1x1.anchors

    Plot Mt3.5 and Mt4.0 side-by-side. This is essentially combined from two
    graphics.dotplot() function calls as panel A and B.
    """
    from jcvi.graphics.dotplot import check_beds, dotplot

    p = OptionParser(mtdotplots.__doc__)
    p.set_beds()
    opts, args, iopts = p.set_image_options(args, figsize="16x8", dpi=90)

    if len(args) != 3:
        sys.exit(not p.print_help())

    a, b, ac = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    r1 = fig.add_axes([0, 0, .5, 1])
    r2 = fig.add_axes([.5, 0, .5, 1])
    a1 = fig.add_axes([.05, .1, .4, .8])
    a2 = fig.add_axes([.55, .1, .4, .8])

    anchorfile = op.join(a, ac)
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)
    dotplot(anchorfile,
            qbed,
            sbed,
            fig,
            r1,
            a1,
            is_self=is_self,
            genomenames="Mt3.5_Mt3.5")

    opts.qbed = opts.sbed = None
    anchorfile = op.join(b, ac)
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)
    dotplot(anchorfile,
            qbed,
            sbed,
            fig,
            r2,
            a2,
            is_self=is_self,
            genomenames="Mt4.0_Mt4.0")

    root.text(.03, .95, "A", ha="center", va="center", size=36)
    root.text(.53, .95, "B", ha="center", va="center", size=36)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "mtdotplots"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #30
0
def multilineplot(args):
    """
    %prog multilineplot fastafile chr1

    Combine multiple line plots in one vertical stack
    Inputs must be BED-formatted.

    --lines: traditional line plots, useful for plotting feature freq
    """
    p = OptionParser(multilineplot.__doc__)
    p.add_option("--lines",
                 help="Features to plot in lineplot [default: %default]")
    p.add_option("--colors",
                 help="List of colors matching number of input bed files")
    p.add_option("--mode", default="span", choices=("span", "count", "score"),
                 help="Accumulate feature based on [default: %default]")
    p.add_option("--binned", default=False, action="store_true",
                 help="Specify whether the input is already binned; " +
                 "if True, input files are considered to be binfiles")
    add_window_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="8x5")

    if len(args) != 2:
        sys.exit(not p.print_help())

    fastafile, chr = args
    window, shift, subtract = check_window_options(opts)
    linebeds = []
    colors = opts.colors
    if opts.lines:
        lines = opts.lines.split(",")
        assert len(colors) == len(lines), "Number of chosen colors must match" + \
                " number of input bed files"
        linebeds = get_beds(lines, binned=opts.binned)

    linebins = get_binfiles(linebeds, fastafile, shift, mode=opts.mode, binned=opts.binned)

    clen = Sizes(fastafile).mapping[chr]
    nbins = get_nbins(clen, shift)

    plt.rcParams["xtick.major.size"] = 0
    plt.rcParams["ytick.major.size"] = 0
    plt.rcParams["figure.figsize"] = iopts.w, iopts.h

    fig, axarr = plt.subplots(nrows=len(lines))
    if len(linebeds) == 1:
        axarr = (axarr, )
    fig.suptitle(chr, color="darkslategray")

    for i, ax in enumerate(axarr):
        lineplot(ax, [linebins[i]], nbins, chr, window, shift, \
                color="{0}{1}".format(colors[i], 'r'))

    plt.subplots_adjust(hspace=0.5)

    image_name = chr + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #31
0
def birch(args):
    """
    %prog birch seqids layout

    Plot birch macro-synteny, with an embedded phylogenetic tree to the right.
    """
    p = OptionParser(birch.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x6")

    if len(args) != 2:
        sys.exit(not p.print_help())

    seqids, layout = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    K = Karyotype(fig, root, seqids, layout)
    L = K.layout

    xs = 0.79
    dt = dict(rectangle=False, circle=False)
    # Embed a phylogenetic tree to the right
    coords = {}
    coords["Amborella"] = (xs, L[0].y)
    coords["Vitis"] = (xs, L[1].y)
    coords["Prunus"] = (xs, L[2].y)
    coords["Betula"] = (xs, L[3].y)
    coords["Populus"] = (xs, L[4].y)
    coords["Arabidopsis"] = (xs, L[5].y)
    coords["fabids"] = join_nodes(root, coords, "Prunus", "Betula", xs, **dt)
    coords["malvids"] = join_nodes(root, coords, "Populus", "Arabidopsis", xs, **dt)
    coords["rosids"] = join_nodes(root, coords, "fabids", "malvids", xs, **dt)
    coords["eudicots"] = join_nodes(root, coords, "rosids", "Vitis", xs, **dt)
    coords["angiosperm"] = join_nodes(root, coords, "eudicots", "Amborella", xs, **dt)

    # Show branch length
    branch_length(root, coords["Amborella"], coords["angiosperm"], ">160.0")
    branch_length(root, coords["eudicots"], coords["angiosperm"], ">78.2", va="top")
    branch_length(root, coords["Vitis"], coords["eudicots"], "138.5")
    branch_length(root, coords["rosids"], coords["eudicots"], "19.8", va="top")
    branch_length(
        root, coords["Prunus"], coords["fabids"], "104.2", ha="right", va="top"
    )
    branch_length(root, coords["Arabidopsis"], coords["malvids"], "110.2", va="top")
    branch_length(
        root, coords["fabids"], coords["rosids"], "19.8", ha="right", va="top"
    )
    branch_length(root, coords["malvids"], coords["rosids"], "8.5", va="top")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "birch"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #32
0
ファイル: assembly.py プロジェクト: JinfengChen/jcvi
def scaffold(args):
    """
    %prog scaffold scaffold.fasta synteny.blast synteny.sizes synteny.bed
                         physicalmap.blast physicalmap.sizes physicalmap.bed

    As evaluation of scaffolding, visualize external line of evidences:
    * Plot synteny to an external genome
    * Plot alignments to physical map
    * Plot alignments to genetic map (TODO)

    Each trio defines one panel to be plotted. blastfile defines the matchings
    between the evidences vs scaffolds. Then the evidence sizes, and evidence
    bed to plot dot plots.

    This script will plot a dot in the dot plot in the corresponding location
    the plots are one contig/scaffold per plot.
    """
    from jcvi.utils.iter import grouper

    p = OptionParser(scaffold.__doc__)
    p.add_option("--cutoff", type="int", default=1000000,
            help="Plot scaffolds with size larger than [default: %default]")
    p.add_option("--highlights",
            help="A set of regions in BED format to highlight [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="14x8", dpi=150)

    if len(args) < 4 or len(args) % 3 != 1:
        sys.exit(not p.print_help())

    highlights = opts.highlights
    scafsizes = Sizes(args[0])
    trios = list(grouper(args[1:], 3))
    trios = [(a, Sizes(b), Bed(c)) for a, b, c in trios]
    if highlights:
        hlbed = Bed(highlights)

    for scaffoldID, scafsize in scafsizes.iter_sizes():
        if scafsize < opts.cutoff:
            continue
        logging.debug("Loading {0} (size={1})".format(scaffoldID,
            thousands(scafsize)))

        tmpname = scaffoldID + ".sizes"
        tmp = open(tmpname, "w")
        tmp.write("{0}\t{1}".format(scaffoldID, scafsize))
        tmp.close()

        tmpsizes = Sizes(tmpname)
        tmpsizes.close(clean=True)

        if highlights:
            subhighlights = list(hlbed.sub_bed(scaffoldID))

        imagename = ".".join((scaffoldID, opts.format))
        plot_one_scaffold(scaffoldID, tmpsizes, None, trios, imagename, iopts,
                          highlights=subhighlights)
コード例 #33
0
def main():
    p = OptionParser(__doc__)
    p.add_option(
        "--basepair",
        default=False,
        action="store_true",
        help="Use base pair position instead of gene rank",
    )
    p.add_option(
        "--nocircles",
        default=False,
        action="store_true",
        help="Do not plot chromosome circles",
    )
    p.add_option(
        "--shadestyle",
        default="curve",
        choices=Shade.Styles,
        help="Style of syntenic wedges",
    )
    p.add_option("-p",
                 "--prefix",
                 default="karyotype",
                 dest="outpfx",
                 type="string",
                 help="File prefix for output image",
                 metavar="FILE_PREFIX")

    opts, args, iopts = p.set_image_options(figsize="8x7")

    if len(args) != 2:
        sys.exit(not p.print_help())

    seqidsfile, layoutfile = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(
        fig,
        root,
        seqidsfile,
        layoutfile,
        plot_circles=(not opts.nocircles),
        shadestyle=opts.shadestyle,
        generank=(not opts.basepair),
    )

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = opts.outpfx
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #34
0
def venn(args):
    """
    %prog venn *.benchmark

    Display benchmark results as Venn diagram.
    """
    from matplotlib_venn import venn2

    p = OptionParser(venn.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="9x9")

    if len(args) < 1:
        sys.exit(not p.print_help())

    bcs = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    pad = .02
    ystart = 1
    ywidth = 1. / len(bcs)
    tags = ("Bowers", "YGOB", "Schnable")
    for bc, tag in zip(bcs, tags):
        fp = open(bc)
        data = []
        for row in fp:
            prog, pcounts, tcounts, shared = row.split()
            pcounts = int(pcounts)
            tcounts = int(tcounts)
            shared = int(shared)
            data.append((prog, pcounts, tcounts, shared))
        xstart = 0
        xwidth = 1. / len(data)
        for prog, pcounts, tcounts, shared in data:
            a, b, c = pcounts - shared, tcounts - shared, shared
            ax = fig.add_axes([xstart + pad, ystart - ywidth + pad,
                               xwidth - 2 * pad, ywidth - 2 * pad])
            venn2(subsets=(a, b, c), set_labels=(prog, tag), ax=ax)
            message = "Sn={0} Pu={1}".\
                format(percentage(shared, tcounts, precision=0, mode=-1),
                       percentage(shared, pcounts, precision=0, mode=-1))
            print(message, file=sys.stderr)
            ax.text(.5, .92, latex(message), ha="center", va="center",
                    transform=ax.transAxes, color='b')
            ax.set_axis_off()
            xstart += xwidth
        ystart -= ywidth

    panel_labels(root, ((.04, .96, "A"), (.04, .96 - ywidth, "B"),
                  (.04, .96 - 2 * ywidth, "C")))
    panel_labels(root, ((.5, .98, "A. thaliana duplicates"),
                        (.5, .98 - ywidth, "14 Yeast genomes"),
                        (.5, .98 - 2 * ywidth, "4 Grass genomes")))
    normalize_axes(root)
    savefig("venn.pdf", dpi=opts.dpi)
コード例 #35
0
ファイル: synfind.py プロジェクト: xuanblo/jcvi
def venn(args):
    """
    %prog venn *.benchmark

    Display benchmark results as Venn diagram.
    """
    from matplotlib_venn import venn2

    p = OptionParser(venn.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="9x9")

    if len(args) < 1:
        sys.exit(not p.print_help())

    bcs = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    pad = .02
    ystart = 1
    ywidth = 1. / len(bcs)
    tags = ("Bowers", "YGOB", "Schnable")
    for bc, tag in zip(bcs, tags):
        fp = open(bc)
        data = []
        for row in fp:
            prog, pcounts, tcounts, shared = row.split()
            pcounts = int(pcounts)
            tcounts = int(tcounts)
            shared = int(shared)
            data.append((prog, pcounts, tcounts, shared))
        xstart = 0
        xwidth = 1. / len(data)
        for prog, pcounts, tcounts, shared in data:
            a, b, c = pcounts - shared, tcounts - shared, shared
            ax = fig.add_axes([xstart + pad, ystart - ywidth + pad,
                               xwidth - 2 * pad, ywidth - 2 * pad])
            venn2(subsets=(a, b, c), set_labels=(prog, tag), ax=ax)
            message = "Sn={0} Pu={1}".\
                format(percentage(shared, tcounts, precision=0, mode=-1),
                       percentage(shared, pcounts, precision=0, mode=-1))
            print >> sys.stderr, message
            ax.text(.5, .92, latex(message), ha="center", va="center",
                    transform=ax.transAxes, color='b')
            ax.set_axis_off()
            xstart += xwidth
        ystart -= ywidth

    panel_labels(root, ((.04, .96, "A"), (.04, .96 - ywidth, "B"),
                  (.04, .96 - 2 * ywidth, "C")))
    panel_labels(root, ((.5, .98, "A. thaliana duplicates"),
                        (.5, .98 - ywidth, "14 Yeast genomes"),
                        (.5, .98 - 2 * ywidth, "4 Grass genomes")))
    normalize_axes(root)
    savefig("venn.pdf", dpi=opts.dpi)
コード例 #36
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def litchi(args):
    """
    %prog litchi mcscan.out all.bed layout switch.ids

    Build a composite figure that calls graphis.synteny.
    """
    p = OptionParser(litchi.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="9x6")

    if len(args) != 4:
        sys.exit(not p.print_help())

    datafile, bedfile, slayout, switch = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(fig, root, datafile, bedfile, slayout, switch=switch)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .4, .7, .82)

    # On the left panel, make a species tree
    fc = 'lightslategrey'

    coords = {}
    xs, xp = .16, .03
    coords["lychee"] = (xs, .37)
    coords["clementine"] = (xs, .5)
    coords["cacao"] = (xs, .6)
    coords["strawberry"] = (xs, .7)
    coords["grape"] = (xs, .8)
    xs -= xp
    coords["Sapindales"] = join_nodes(root, coords, "clementine", "lychee", xs)
    xs -= xp
    coords["Rosid-II"] = join_nodes(root, coords, "cacao", "Sapindales", xs)
    xs -= xp
    coords["Rosid"] = join_nodes(root, coords, "strawberry", "Rosid-II", xs)
    xs -= xp
    coords["crown"] = join_nodes(root, coords, "grape", "Rosid", xs,
                                 circle=False)

    # Names of the internal nodes
    for tag in ("Rosid", "Rosid-II", "Sapindales"):
        nx, ny = coords[tag]
        nx, ny = nx - .01, ny - .02
        root.text(nx, ny, tag, rotation=90, ha="right", va="top", color=fc)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "litchi"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #37
0
ファイル: synteny.py プロジェクト: wroldwiedbwe/jcvi
def main():
    p = OptionParser(__doc__)
    p.add_option(
        "--switch", help="Rename the seqid with two-column file [default: %default]"
    )
    p.add_option(
        "--tree", help="Display trees on the bottom of the figure [default: %default]"
    )
    p.add_option("--extra", help="Extra features in BED format")
    p.add_option(
        "--scalebar",
        default=False,
        action="store_true",
        help="Add scale bar to the plot",
    )
    p.add_option(
        "--shadestyle",
        default="curve",
        choices=Shade.Styles,
        help="Style of syntenic wedges",
    )
    opts, args, iopts = p.set_image_options(figsize="8x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    datafile, bedfile, layoutfile = args
    switch = opts.switch
    tree = opts.tree

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Synteny(
        fig,
        root,
        datafile,
        bedfile,
        layoutfile,
        switch=switch,
        tree=tree,
        extra_features=opts.extra,
        scalebar=opts.scalebar,
        shadestyle=opts.shadestyle,
    )

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #38
0
def multireport(args):
    """
    %prog multireport layoutfile

    Generate several Ks value distributions in the same figure. If the layout
    file is missing then a template file listing all ks files will be written.

    The layout file contains the Ks file, number of components, colors, and labels:

    # Ks file, ncomponents, label, color, marker
    LAP.sorghum.ks, 1, LAP-sorghum, r, o
    SES.sorghum.ks, 1, SES-sorghum, g, +
    MOL.sorghum.ks, 1, MOL-sorghum, m, ^

    If color or marker is missing, then a random one will be assigned.
    """
    p = OptionParser(multireport.__doc__)
    p.set_outfile(outfile="Ks_plot.pdf")
    add_plot_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="8x6")

    if len(args) != 1:
        sys.exit(not p.print_help())

    (layoutfile, ) = args
    ks_min = opts.vmin
    ks_max = opts.vmax
    bins = opts.bins
    fill = opts.fill
    layout = Layout(layoutfile)
    print(layout, file=sys.stderr)

    fig = plt.figure(1, (iopts.w, iopts.h))
    ax = fig.add_axes([0.12, 0.13, 0.8, 0.8])

    kp = KsPlot(ax, ks_max, bins, legendp=opts.legendp)
    for lo in layout:
        data = KsFile(lo.ksfile)
        data = [x.ng_ks for x in data]
        data = [x for x in data if ks_min <= x <= ks_max]
        kp.add_data(
            data,
            lo.components,
            label=lo.label,
            color=lo.color,
            marker=lo.marker,
            fill=fill,
            fitted=opts.fit,
            kde=opts.kde,
        )

    kp.draw(title=opts.title, filename=opts.outfile)
コード例 #39
0
ファイル: assembly.py プロジェクト: Hensonmw/jcvi
def covlen(args):
    """
    %prog covlen covfile fastafile

    Plot coverage vs length. `covfile` is two-column listing contig id and
    depth of coverage.
    """
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from jcvi.formats.base import DictFile

    p = OptionParser(covlen.__doc__)
    p.add_option("--maxsize", default=1000000, type="int", help="Max contig size")
    p.add_option("--maxcov", default=100, type="int", help="Max contig size")
    p.add_option("--color", default='m', help="Color of the data points")
    p.add_option("--kind", default="scatter",
                 choices=("scatter", "reg", "resid", "kde", "hex"),
                 help="Kind of plot to draw")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 2:
        sys.exit(not p.print_help())

    covfile, fastafile = args
    cov = DictFile(covfile, cast=float)
    s = Sizes(fastafile)
    data = []
    maxsize, maxcov = opts.maxsize, opts.maxcov
    for ctg, size in s.iter_sizes():
        c = cov.get(ctg, 0)
        if size > maxsize:
            continue
        if c > maxcov:
            continue
        data.append((size, c))

    x, y = zip(*data)
    x = np.array(x)
    y = np.array(y)
    logging.debug("X size {0}, Y size {1}".format(x.size, y.size))

    df = pd.DataFrame()
    xlab, ylab = "Length", "Coverage of depth (X)"
    df[xlab] = x
    df[ylab] = y
    sns.jointplot(xlab, ylab, kind=opts.kind, data=df,
                  xlim=(0, maxsize), ylim=(0, maxcov),
                  stat_func=None, edgecolor="w", color=opts.color)

    figname = covfile + ".pdf"
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
コード例 #40
0
ファイル: tgbs.py プロジェクト: tanghaibao/jcvi
def snpplot(args):
    """
    %prog counts.cdt

    Illustrate the histogram per SNP site.
    """
    p = OptionParser(snpplot.__doc__)
    opts, args, iopts = p.set_image_options(args, format="png")

    if len(args) != 1:
        sys.exit(not p.print_help())

    datafile, = args
    # Read in CDT file
    fp = open(datafile)
    next(fp)
    next(fp)
    data = []
    for row in fp:
        atoms = row.split()[4:]
        nval = len(atoms)
        values = [float(x) for x in atoms]
        # normalize
        values = [x * 1. / sum(values) for x in values]
        data.append(values)

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    xmin, xmax = .1, .9
    ymin, ymax = .1, .9
    yinterval = (ymax - ymin) / len(data)
    colors = "rbg" if nval == 3 else ["lightgray"] + list("rbg")
    ystart = ymax
    for d in data:
        xstart = xmin
        for dd, c in zip(d, colors):
            xend = xstart + (xmax - xmin) * dd
            root.plot((xstart, xend), (ystart, ystart), "-", color=c)
            xstart = xend
        ystart -= yinterval

    root.text(.05, .5, "{0} LMD50 SNPs".format(len(data)),
              ha="center", va="center", rotation=90, color="lightslategray")

    for x, t, c in zip((.3, .5, .7), ("REF", "ALT", "HET"), "rbg"):
        root.text(x, .95, t, color=c, ha="center", va="center")
    normalize_axes(root)

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #41
0
ファイル: misc.py プロジェクト: biologyguy/jcvi
def amborella(args):
    """
    %prog amborella seqids karyotype.layout mcscan.out all.bed synteny.layout

    Build a composite figure that calls graphics.karyotype and graphics.synteny.
    """
    p = OptionParser(amborella.__doc__)
    p.add_option(
        "--tree",
        help="Display trees on the bottom of the figure [default: %default]")
    p.add_option(
        "--switch",
        help="Rename the seqid with two-column file [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="8x7")

    if len(args) != 5:
        sys.exit(not p.print_help())

    seqidsfile, klayout, datafile, bedfile, slayout = args
    switch = opts.switch
    tree = opts.tree

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)
    Synteny(fig, root, datafile, bedfile, slayout, switch=switch, tree=tree)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .5, .68, .5)

    # annotate the WGD events
    fc = 'lightslategrey'
    x = .05
    radius = .012
    TextCircle(root, x, .86, '$\gamma$', radius=radius)
    TextCircle(root, x, .95, '$\epsilon$', radius=radius)
    root.plot([x, x], [.83, .9], ":", color=fc, lw=2)
    pts = plot_cap((x, .95), np.radians(range(-70, 250)), .02)
    x, y = zip(*pts)
    root.plot(x, y, ":", color=fc, lw=2)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "amborella"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #42
0
ファイル: hic.py プロジェクト: zengxiaofei/jcvi
def movieframe(args):
    """
    %prog movieframe tour test.clm contigs.ref.anchors

    Draw heatmap and synteny in the same plot.
    """
    p = OptionParser(movieframe.__doc__)
    p.add_option("--label", help="Figure title")
    p.set_beds()
    p.set_outfile(outfile=None)
    opts, args, iopts = p.set_image_options(args,
                                            figsize="16x8",
                                            style="white",
                                            cmap="coolwarm",
                                            format="png",
                                            dpi=120)

    if len(args) != 3:
        sys.exit(not p.print_help())

    tour, clmfile, anchorsfile = args
    tour = tour.split(",")
    image_name = opts.outfile or ("movieframe." + iopts.format)
    label = opts.label or op.basename(image_name).rsplit(".", 1)[0]

    clm = CLMFile(clmfile)
    totalbins, bins, breaks = make_bins(tour, clm.tig_to_size)
    M = read_clm(clm, totalbins, bins)

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])  # whole canvas
    ax1 = fig.add_axes([.05, .1, .4, .8])  # heatmap
    ax2 = fig.add_axes([.55, .1, .4, .8])  # dot plot
    ax2_root = fig.add_axes([.5, 0, .5, 1])  # dot plot canvas

    # Left axis: heatmap
    plot_heatmap(ax1, M, breaks, iopts)

    # Right axis: synteny
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile,
                                                     p,
                                                     opts,
                                                     sorted=False)
    dotplot(anchorsfile, qbed, sbed, fig, ax2_root, ax2, sep=False, title="")

    root.text(.5, .98, clm.name, color="g", ha="center", va="center")
    root.text(.5, .95, label, color="darkslategray", ha="center", va="center")
    normalize_axes(root)
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #43
0
ファイル: pineapple.py プロジェクト: zhimenggan/jcvi
def ploidy(args):
    """
    %prog ploidy seqids karyotype.layout mcscan.out all.bed synteny.layout

    Build a figure that calls graphics.karyotype to illustrate the high ploidy
    of WGD history of pineapple genome. The script calls both graphics.karyotype
    and graphic.synteny.
    """
    p = OptionParser(ploidy.__doc__)
    p.add_option("--switch", help="Rename the seqid with two-column file")
    opts, args, iopts = p.set_image_options(args, figsize="9x7")

    if len(args) != 5:
        sys.exit(not p.print_help())

    seqidsfile, klayout, datafile, bedfile, slayout = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)
    Synteny(fig, root, datafile, bedfile, slayout, switch=opts.switch)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .27, .37, .52)

    # annotate the WGD events
    fc = 'lightslategrey'
    x = .09
    radius = .012
    TextCircle(root, x, .825, r'$\tau$', radius=radius, fc=fc)
    TextCircle(root, x, .8, r'$\sigma$', radius=radius, fc=fc)
    TextCircle(root, x, .72, r'$\rho$', radius=radius, fc=fc)
    for ypos in (.825, .8, .72):
        root.text(.12, ypos, r"$\times2$", color=fc, ha="center", va="center")
    root.plot([x, x], [.85, .775], ":", color=fc, lw=2)
    root.plot([x, x], [.75, .675], ":", color=fc, lw=2)

    labels = ((.04, .96, 'A'), (.04, .54, 'B'))
    panel_labels(root, labels)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "pineapple-karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #44
0
ファイル: pineapple.py プロジェクト: galaxy001/jcvi
def ploidy(args):
    """
    %prog cotton seqids karyotype.layout mcscan.out all.bed synteny.layout

    Build a figure that calls graphics.karyotype to illustrate the high ploidy
    of WGD history of pineapple genome. The script calls both graphics.karyotype
    and graphic.synteny.
    """
    p = OptionParser(ploidy.__doc__)
    p.add_option("--switch", help="Rename the seqid with two-column file")
    opts, args, iopts = p.set_image_options(args, figsize="9x7")

    if len(args) != 5:
        sys.exit(not p.print_help())

    seqidsfile, klayout, datafile, bedfile, slayout = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)
    Synteny(fig, root, datafile, bedfile, slayout, switch=opts.switch)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .27, .37, .52)

    # annotate the WGD events
    fc = 'lightslategrey'
    x = .09
    radius = .012
    TextCircle(root, x, .825, r'$\tau$', radius=radius, fc=fc)
    TextCircle(root, x, .8, r'$\sigma$', radius=radius, fc=fc)
    TextCircle(root, x, .72, r'$\rho$', radius=radius, fc=fc)
    for ypos in (.825, .8, .72):
        root.text(.12, ypos, r"$\times2$", color=fc, ha="center", va="center")
    root.plot([x, x], [.85, .775], ":", color=fc, lw=2)
    root.plot([x, x], [.75, .675], ":", color=fc, lw=2)

    labels = ((.04, .96, 'A'), (.04, .54, 'B'))
    panel_labels(root, labels)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "pineapple-karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #45
0
ファイル: napus.py プロジェクト: rrane/jcvi
def ploidy(args):
    """
    %prog ploidy seqids layout

    Build a figure that calls graphics.karyotype to illustrate the high ploidy
    of B. napus genome.
    """
    p = OptionParser(ploidy.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x7")

    if len(args) != 2:
        sys.exit(not p.print_help())

    seqidsfile, klayout = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)

    fc = "darkslategrey"
    radius = .012
    ot = -.05  # use this to adjust vertical position of the left panel
    TextCircle(root, .1, .9 + ot, r'$\gamma$', radius=radius, fc=fc)
    root.text(.1, .88 + ot, r"$\times3$", ha="center", va="top", color=fc)
    TextCircle(root, .08, .79 + ot, r'$\alpha$', radius=radius, fc=fc)
    TextCircle(root, .12, .79 + ot, r'$\beta$', radius=radius, fc=fc)
    root.text(.1, .77 + ot, r"$\times3\times2\times2$", ha="center", va="top", color=fc)
    root.text(.1, .67 + ot, r"Brassica triplication", ha="center",
                va="top", color=fc, size=11)
    root.text(.1, .65 + ot, r"$\times3\times2\times2\times3$", ha="center", va="top", color=fc)
    root.text(.1, .42 + ot, r"Allo-tetraploidy", ha="center",
                va="top", color=fc, size=11)
    root.text(.1, .4 + ot, r"$\times3\times2\times2\times3\times2$", ha="center", va="top", color=fc)

    bb = dict(boxstyle="round,pad=.5", fc="w", ec="0.5", alpha=0.5)
    root.text(.5, .2 + ot, r"\noindent\textit{Brassica napus}\\"
                "(A$\mathsf{_n}$C$\mathsf{_n}$ genome)", ha="center",
                size=16, color="k", bbox=bb)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "napus"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #46
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def amborella(args):
    """
    %prog amborella seqids karyotype.layout mcscan.out all.bed synteny.layout

    Build a composite figure that calls graphics.karyotype and graphics.synteny.
    """
    p = OptionParser(amborella.__doc__)
    p.add_option("--tree",
                 help="Display trees on the bottom of the figure [default: %default]")
    p.add_option("--switch",
                 help="Rename the seqid with two-column file [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="8x7")

    if len(args) != 5:
        sys.exit(not p.print_help())

    seqidsfile, klayout, datafile, bedfile, slayout = args
    switch = opts.switch
    tree = opts.tree

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, klayout)
    Synteny(fig, root, datafile, bedfile, slayout, switch=switch, tree=tree)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .5, .68, .5)

    # annotate the WGD events
    fc = 'lightslategrey'
    x = .05
    radius = .012
    TextCircle(root, x, .86, '$\gamma$', radius=radius)
    TextCircle(root, x, .95, '$\epsilon$', radius=radius)
    root.plot([x, x], [.83, .9], ":", color=fc, lw=2)
    pts = plot_cap((x, .95), np.radians(range(-70, 250)), .02)
    x, y = zip(*pts)
    root.plot(x, y, ":", color=fc, lw=2)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "amborella"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #47
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def ccn(args):
    """
    %prog ccn combined.tsv

    Plot several ccn plots including chr1,chrX,chrY,chrM
    """
    p = OptionParser(ccn.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="12x8")

    if len(args) != 1:
        sys.exit(not p.print_help())

    tsvfile, = args
    df = pd.read_csv(tsvfile, sep="\t")
    composite_ccn(df, size=(iopts.w, iopts.h))
    outfile = tsvfile.rsplit(".", 1)[0] + ".ccn.pdf"
    savefig(outfile)
コード例 #48
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def correlation(args):
    """
    %prog correlation postgenomic-s.tsv

    Plot correlation of age vs. postgenomic features.
    """
    p = OptionParser(correlation.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="12x8")

    if len(args) != 1:
        sys.exit(not p.print_help())

    tsvfile, = args
    df = pd.read_csv(tsvfile, sep="\t")
    composite_correlation(df, size=(iopts.w, iopts.h))
    outfile = tsvfile.rsplit(".", 1)[0] + ".correlation.pdf"
    savefig(outfile)
コード例 #49
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def mtdotplots(args):
    """
    %prog mtdotplots Mt3.5 Mt4.0 medicago.medicago.lifted.1x1.anchors

    Plot Mt3.5 and Mt4.0 side-by-side. This is essentially combined from two
    graphics.dotplot() function calls as panel A and B.
    """
    from jcvi.graphics.dotplot import check_beds, dotplot

    p = OptionParser(mtdotplots.__doc__)
    p.set_beds()
    opts, args, iopts = p.set_image_options(args, figsize="16x8", dpi=90)

    if len(args) != 3:
        sys.exit(not p.print_help())

    a, b, ac = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    r1 = fig.add_axes([0, 0, .5, 1])
    r2 = fig.add_axes([.5, 0, .5, 1])
    a1 = fig.add_axes([.05, .1, .4, .8])
    a2 = fig.add_axes([.55, .1, .4, .8])

    anchorfile = op.join(a, ac)
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)
    dotplot(anchorfile, qbed, sbed, fig, r1, a1, is_self=is_self,
            genomenames="Mt3.5_Mt3.5")

    opts.qbed = opts.sbed = None
    anchorfile = op.join(b, ac)
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)
    dotplot(anchorfile, qbed, sbed, fig, r2, a2, is_self=is_self,
            genomenames="Mt4.0_Mt4.0")

    root.text(.03, .95, "A", ha="center", va="center", size=36)
    root.text(.53, .95, "B", ha="center", va="center", size=36)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "mtdotplots"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #50
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def qc(args):
    """
    %prog qc postgenomic-s.tsv

    Plot basic statistics of a given sample:
    Age, Gender, Ethnicity, Cohort, Chemistry
    """
    p = OptionParser(heritability.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="10x6")

    if len(args) != 1:
        sys.exit(not p.print_help())

    tsvfile, = args
    df = pd.read_csv(tsvfile, sep="\t")
    composite_qc(df, size=(iopts.w, iopts.h))
    outfile = tsvfile.rsplit(".", 1)[0] + ".qc.pdf"
    savefig(outfile)
コード例 #51
0
ファイル: ks.py プロジェクト: ascendo/jcvi
def multireport(args):
    """
    %prog multireport layoutfile

    Generate several Ks value distributions in the same figure. If the layout
    file is missing then a template file listing all ks files will be written.

    The layout file contains the Ks file, number of components, colors, and labels:

    # Ks file, ncomponents, label, color, marker
    LAP.sorghum.ks, 1, LAP-sorghum, r, o
    SES.sorghum.ks, 1, SES-sorghum, g, +
    MOL.sorghum.ks, 1, MOL-sorghum, m, ^

    If color or marker is missing, then a random one will be assigned.
    """
    p = OptionParser(multireport.__doc__)
    p.set_outfile(outfile="Ks_plot.pdf")
    add_plot_options(p)
    opts, args, iopts = p.set_image_options(args, figsize="5x5")

    if len(args) != 1:
        sys.exit(not p.print_help())

    layoutfile, = args
    ks_min = opts.vmin
    ks_max = opts.vmax
    bins = opts.bins
    fill = opts.fill
    layout = Layout(layoutfile)
    print >> sys.stderr, layout

    fig = plt.figure(1, (iopts.w, iopts.h))
    ax = fig.add_axes([.12, .1, .8, .8])
    kp = KsPlot(ax, ks_max, bins, legendp=opts.legendp)
    for lo in layout:
        data = KsFile(lo.ksfile)
        data = [x.ng_ks for x in data]
        data = [x for x in data if ks_min <= x <= ks_max]
        kp.add_data(data, lo.components, label=lo.label, \
                    color=lo.color, marker=lo.marker,
                    fill=fill, fitted=opts.fit)

    kp.draw(title=opts.title, filename=opts.outfile)
コード例 #52
0
ファイル: hic.py プロジェクト: xuanblo/jcvi
def movieframe(args):
    """
    %prog movieframe tour test.clm contigs.ref.anchors

    Draw heatmap and synteny in the same plot.
    """
    p = OptionParser(movieframe.__doc__)
    p.add_option("--label", help="Figure title")
    p.set_beds()
    p.set_outfile(outfile=None)
    opts, args, iopts = p.set_image_options(args, figsize="16x8",
                                            style="white", cmap="coolwarm",
                                            format="png", dpi=120)

    if len(args) != 3:
        sys.exit(not p.print_help())

    tour, clmfile, anchorsfile = args
    tour = tour.split(",")
    image_name = opts.outfile or ("movieframe." + iopts.format)
    label = opts.label or op.basename(image_name).rsplit(".", 1)[0]

    clm = CLMFile(clmfile)
    totalbins, bins, breaks = make_bins(tour, clm.tig_to_size)
    M = read_clm(clm, totalbins, bins)

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])        # whole canvas
    ax1 = fig.add_axes([.05, .1, .4, .8])    # heatmap
    ax2 = fig.add_axes([.55, .1, .4, .8])    # dot plot
    ax2_root = fig.add_axes([.5, 0, .5, 1])  # dot plot canvas

    # Left axis: heatmap
    plot_heatmap(ax1, M, breaks, iopts)

    # Right axis: synteny
    qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts,
                                                     sorted=False)
    dotplot(anchorsfile, qbed, sbed, fig, ax2_root, ax2, sep=False, title="")

    root.text(.5, .98, clm.name, color="g", ha="center", va="center")
    root.text(.5, .95, label, color="darkslategray", ha="center", va="center")
    normalize_axes(root)
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #53
0
ファイル: karyotype.py プロジェクト: JinfengChen/jcvi
def main():
    p = OptionParser(__doc__)
    opts, args, iopts = p.set_image_options(figsize="8x7")

    if len(args) != 2:
        sys.exit(not p.print_help())

    seqidsfile, layoutfile = args

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    Karyotype(fig, root, seqidsfile, layoutfile)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    pf = "karyotype"
    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #54
0
ファイル: allmaps.py プロジェクト: yangjl/jcvi
def plotall(xargs):
    """
    %prog plotall input.bed

    Plot the matchings between the reconstructed pseudomolecules and the maps.
    This command will plot each reconstructed object (non-singleton).
    """
    p = OptionParser(plotall.__doc__)
    add_allmaps_plot_options(p)
    opts, args, iopts = p.set_image_options(xargs, figsize="10x6")

    if len(args) != 1:
        sys.exit(not p.print_help())

    inputbed, = args
    pf = inputbed.rsplit(".", 1)[0]
    agpfile = pf + ".agp"
    agp = AGP(agpfile)
    objects = [ob for ob, lines in agp.iter_object() if len(lines) > 1]
    for seqid in sorted(objects):
        plot(xargs + [seqid])
コード例 #55
0
ファイル: assembly.py プロジェクト: JinfengChen/jcvi
def covlen(args):
    """
    %prog covlen covfile fastafile

    Plot coverage vs lenght. `covfile` is two-column listing contig id and
    depth of coverage.
    """
    import numpy as np
    import seaborn as sns
    from jcvi.formats.base import DictFile

    p = OptionParser(covlen.__doc__)
    p.add_option("--maxsize", default=100000, type="int", help="Max contig size")
    p.add_option("--maxcov", default=100, type="int", help="Max contig size")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 2:
        sys.exit(not p.print_help())

    covfile, fastafile = args
    cov = DictFile(covfile, cast=float)
    s = Sizes(fastafile)
    data = []
    maxsize, maxcov = opts.maxsize, opts.maxcov
    for ctg, size in s.iter_sizes():
        c = cov[ctg]
        if size > maxsize:
            continue
        if c > maxcov:
            continue
        data.append((size, c))

    x, y = zip(*data)
    x = np.array(x)
    y = np.array(y)
    logging.debug("X size {0}, Y size {1}".format(x.size, y.size))
    sns.jointplot(x, y, kind="kde")

    figname = covfile + ".pdf"
    savefig(figname, dpi=iopts.dpi, iopts=iopts)
コード例 #56
0
ファイル: cnv.py プロジェクト: xuanblo/jcvi
def plot(args):
    """
    %prog plot workdir sample chr1,chr2

    Plot some chromosomes for visual proof. Separate multiple chromosomes with
    comma. Must contain folder workdir/sample-cn/.
    """
    from jcvi.graphics.base import savefig

    p = OptionParser(plot.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x7", format="png")

    if len(args) != 3:
        sys.exit(not p.print_help())

    workdir, sample_key, chrs = args
    chrs = chrs.split(",")
    hmm = CopyNumberHMM(workdir=workdir)
    hmm.plot(sample_key, chrs=chrs)

    image_name = sample_key + "_cn." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #57
0
ファイル: misc.py プロジェクト: tanghaibao/jcvi
def utricularia(args):
    from jcvi.graphics.synteny import main as synteny_main

    p = OptionParser(synteny_main.__doc__)
    p.add_option("--switch",
                 help="Rename the seqid with two-column file")
    opts, args, iopts = p.set_image_options(args, figsize="8x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    datafile, bedfile, layoutfile = args
    switch = opts.switch

    pf = datafile.rsplit(".", 1)[0]
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])

    s = Synteny(fig, root, datafile, bedfile, layoutfile, loc_label=False, switch=switch)
    light = "lightslategrey"
    RoundRect(root, (.02, .69), .96, .24, fill=False, lw=2, ec=light)
    RoundRect(root, (.02, .09), .96, .48, fill=False, lw=2, ec=light)
    za, zb = s.layout[1].ratio, s.layout[-1].ratio  # zoom level
    if za != 1:
        root.text(.96, .89, "{}x zoom".format(za).replace(".0x", "x"),
                  color=light, ha="right", va="center", size=14)
    if zb != 1:
        root.text(.96, .12, "{}x zoom".format(zb).replace(".0x", "x"),
                  color=light, ha="right", va="center", size=14)

    # legend showing the orientation of the genes
    draw_gene_legend(root, .22, .3, .64, text=True)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = pf + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
コード例 #58
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def regression(args):
    """
    %prog regression postgenomic-s.tsv

    Plot chronological vs. predicted age.
    """
    p = OptionParser(regression.__doc__)
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 1:
        sys.exit(not p.print_help())

    tsvfile, = args
    df = pd.read_csv(tsvfile, sep="\t")
    chrono = "Chronological age (yr)"
    pred = "Predicted age (yr)"
    resdf = pd.DataFrame({chrono: df["hli_calc_age_sample_taken"], pred: df["Predicted Age"]})
    g = sns.jointplot(chrono, pred, resdf, joint_kws={"s": 6},
                      xlim=(0, 100), ylim=(0, 80))
    g.fig.set_figwidth(iopts.w)
    g.fig.set_figheight(iopts.h)
    outfile = tsvfile.rsplit(".", 1)[0] + ".regression.pdf"
    savefig(outfile)
コード例 #59
0
ファイル: allmaps.py プロジェクト: radaniba/jcvi
def simulation(args):
    """
    %prog simulation inversion.txt translocation.txt maps.txt multimaps.txt

    Plot ALLMAPS accuracy across a range of simulated datasets.
    """
    p = OptionParser(simulation.__doc__)
    opts, args, iopts = p.set_image_options(args, dpi=300)

    if len(args) != 4:
        sys.exit(not p.print_help())

    dataA, dataB, dataC, dataD = args
    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    A = fig.add_axes([.12, .62, .35, .35])
    B = fig.add_axes([.62, .62, .35, .35])
    C = fig.add_axes([.12, .12, .35, .35])
    D = fig.add_axes([.62, .12, .35, .35])
    dataA = import_data(dataA)
    dataB = import_data(dataB)
    dataC = import_data(dataC)
    dataD = import_data(dataD)
    subplot(A, dataA, "Inversion error rate", "Accuracy", xlim=.5)
    subplot(B, dataB, "Translocation error rate", "Accuracy", xlim=.5,
                      legend=("intra-chromosomal", "inter-chromosomal",
                              "75\% intra + 25\% inter"))
    subplot(C, dataC, "Number of input maps", "Accuracy", xcast=int)
    subplot(D, dataD, "Number of input maps", "Accuracy", xcast=int)

    labels = ((.03, .97, "A"), (.53, .97, "B"),
              (.03, .47, "C"), (.53, .47, "D"))
    panel_labels(root, labels)

    normalize_axes(root)
    image_name = "simulation." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)