コード例 #1
0
ファイル: age.py プロジェクト: zjwang6/jcvi
def composite_correlation(df, size=(12, 8)):
    """ Plot composite correlation figure
    """
    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    chemistry = ["V1", "V2", "V2.5", float("nan")]
    colors = sns.color_palette("Set2", 8)
    color_map = dict(zip(chemistry, colors))

    age_label = "Chronological age (yr)"
    ax1.scatter(df["hli_calc_age_sample_taken"],
                df["teloLength"],
                s=10,
                marker='.',
                color=df["Chemistry"].map(color_map))
    ax1.set_ylim(0, 15)
    ax1.set_ylabel("Telomere length (Kb)")

    ax2.scatter(df["hli_calc_age_sample_taken"],
                df["ccn.chrX"],
                s=10,
                marker='.',
                color=df["Chemistry"].map(color_map))
    ax2.set_ylim(1.8, 2.1)
    ax2.set_ylabel("ChrX copy number")

    ax4.scatter(df["hli_calc_age_sample_taken"],
                df["ccn.chrY"],
                s=10,
                marker='.',
                color=df["Chemistry"].map(color_map))
    ax4.set_ylim(0.8, 1.1)
    ax4.set_ylabel("ChrY copy number")

    ax3.scatter(df["hli_calc_age_sample_taken"],
                df["TRA.PPM"],
                s=10,
                marker='.',
                color=df["Chemistry"].map(color_map))
    ax3.set_ylim(0, 250)
    ax3.set_ylabel("$TCR-\\alpha$ deletions (count per million reads)")

    from matplotlib.lines import Line2D
    legend_elements = [Line2D([0], [0], marker='.', color='w', label=chem,
                          markerfacecolor=color, markersize=16) \
                        for (chem, color) in zip(chemistry, colors)[:3]]
    for ax in (ax1, ax2, ax3, ax4):
        ax.set_xlabel(age_label)
        ax.legend(handles=legend_elements, loc="upper right")

    plt.tight_layout()
    root = fig.add_axes((0, 0, 1, 1))
    labels = ((.02, .98, "A"), (.52, .98, "B"), (.02, .5, "C"), (.52, .5, "D"))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #2
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def composite_correlation(df, size=(12, 8)):
    """ Plot composite correlation figure
    """
    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    chemistry = ["V1", "V2", "V2.5", float("nan")]
    colors = sns.color_palette("Set2", 8)
    color_map = dict(zip(chemistry, colors))

    age_label = "Chronological age (yr)"
    ax1.scatter(df["hli_calc_age_sample_taken"], df["teloLength"],
                s=10, marker='.',
                color=df["Chemistry"].map(color_map))
    ax1.set_ylim(0, 15)
    ax1.set_ylabel("Telomere length (Kb)")

    ax2.scatter(df["hli_calc_age_sample_taken"], df["ccn.chrX"],
                s=10, marker='.',
                color=df["Chemistry"].map(color_map))
    ax2.set_ylim(1.8, 2.1)
    ax2.set_ylabel("ChrX copy number")

    ax4.scatter(df["hli_calc_age_sample_taken"], df["ccn.chrY"],
                s=10, marker='.',
                color=df["Chemistry"].map(color_map))
    ax4.set_ylim(0.8, 1.1)
    ax4.set_ylabel("ChrY copy number")

    ax3.scatter(df["hli_calc_age_sample_taken"], df["TRA.PPM"],
                s=10, marker='.',
                color=df["Chemistry"].map(color_map))
    ax3.set_ylim(0, 250)
    ax3.set_ylabel("$TCR-\\alpha$ deletions (count per million reads)")

    from matplotlib.lines import Line2D
    legend_elements = [Line2D([0], [0], marker='.', color='w', label=chem,
                          markerfacecolor=color, markersize=16) \
                        for (chem, color) in zip(chemistry, colors)[:3]]
    for ax in (ax1, ax2, ax3, ax4):
        ax.set_xlabel(age_label)
        ax.legend(handles=legend_elements, loc="upper right")

    plt.tight_layout()
    root = fig.add_axes((0, 0, 1, 1))
    labels = ((.02, .98, "A"),
              (.52, .98, "B"),
              (.02, .5, "C"),
              (.52, .5, "D"))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #3
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def composite(df, sameGenderMZ, sameGenderDZ, size=(16, 24)):
    """Embed both absdiff figures and heritability figures.
    """
    fig = plt.figure(1, size)

    ax1a = plt.subplot2grid((6, 4), (0, 0), rowspan=2, colspan=1)
    ax2a = plt.subplot2grid((6, 4), (0, 1), rowspan=2, colspan=1)
    ax3a = plt.subplot2grid((6, 4), (0, 2), rowspan=2, colspan=1)
    ax4a = plt.subplot2grid((6, 4), (0, 3), rowspan=2, colspan=1)
    ax1b = plt.subplot2grid((6, 4), (2, 0), rowspan=2, colspan=2)
    ax2b = plt.subplot2grid((6, 4), (2, 2), rowspan=2, colspan=2)
    ax3b = plt.subplot2grid((6, 4), (4, 0), rowspan=2, colspan=2)
    ax4b = plt.subplot2grid((6, 4), (4, 2), rowspan=2, colspan=2)

    # Telomeres
    telomeres = extract_trait(df, "Sample name", "telomeres.Length")
    mzTelomeres = extract_twin_values(sameGenderMZ, telomeres)
    dzTelomeres = extract_twin_values(sameGenderDZ, telomeres)
    plot_paired_values(ax1b, mzTelomeres, dzTelomeres, label="Telomere length")
    plot_abs_diff(ax1a, mzTelomeres, dzTelomeres, label="Telomere length")

    # CCNX
    CCNX = extract_trait(df, "Sample name", "ccn.chrX")
    mzCCNX = extract_twin_values(sameGenderMZ, CCNX, gender="Female")
    dzCCNX = extract_twin_values(sameGenderDZ, CCNX, gender="Female")
    dzCCNX = filter_low_values(dzCCNX, 1.75)
    plot_paired_values(ax2b, mzCCNX, dzCCNX, gender="Female only", label="ChrX copy number")
    plot_abs_diff(ax2a, mzCCNX, dzCCNX, label="ChrX copy number")

    # CCNY
    CCNY = extract_trait(df, "Sample name", "ccn.chrY")
    mzCCNY = extract_twin_values(sameGenderMZ, CCNY, gender="Male")
    dzCCNY = extract_twin_values(sameGenderDZ, CCNY, gender="Male")
    dzCCNY = filter_low_values(dzCCNY, .75)

    plot_paired_values(ax3b, mzCCNY, dzCCNY, gender="Male only", label="ChrY copy number")
    plot_abs_diff(ax3a, mzCCNY, dzCCNY, label="ChrY copy number")

    # CCNY
    TRA = extract_trait(df, "Sample name", "TRA.PPM")
    mzTRA = extract_twin_values(sameGenderMZ, TRA)
    dzTRA = extract_twin_values(sameGenderDZ, TRA)
    plot_paired_values(ax4b, mzTRA, dzTRA, label="TCR-$\\alpha$ deletions")
    plot_abs_diff(ax4a, mzTRA, dzTRA, label="TCR-$\\alpha$ deletions")

    plt.tight_layout()

    root = fig.add_axes((0, 0, 1, 1))
    # ABCD absdiff, EFGH heritability
    labels = ((.03, .99, 'A'), (.27, .99, 'B'), (.53, .99, 'C'), (.77, .99, 'D'),
              (.03, .67, 'E'), (.53, .67, 'F'),
              (.03, .34, 'G'), (.53, .34, 'H'))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #4
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def composite_qc(df_orig, size=(16, 12)):
    """ Plot composite QC figures
    """
    df = df_orig.rename(columns={"hli_calc_age_sample_taken": "Age",
                       "hli_calc_gender": "Gender",
                       "eth7_max": "Ethnicity",
                       "MeanCoverage": "Mean coverage",
                       "Chemistry": "Sequencing chemistry",
                       "Release Client": "Cohort",

                      })

    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 7), (0, 0), rowspan=1, colspan=2)
    ax2 = plt.subplot2grid((2, 7), (0, 2), rowspan=1, colspan=2)
    ax3 = plt.subplot2grid((2, 7), (0, 4), rowspan=1, colspan=3)
    ax4 = plt.subplot2grid((2, 7), (1, 0), rowspan=1, colspan=2)
    ax5 = plt.subplot2grid((2, 7), (1, 2), rowspan=1, colspan=2)
    ax6 = plt.subplot2grid((2, 7), (1, 4), rowspan=1, colspan=3)

    sns.distplot(df["Age"].dropna(), kde=False, ax=ax1)
    sns.countplot(x="Gender", data=df, ax=ax2)
    sns.countplot(x="Ethnicity", data=df, ax=ax3,
                    order = df['Ethnicity'].value_counts().index)
    sns.distplot(df["Mean coverage"].dropna(), kde=False, ax=ax4)
    ax4.set_xlim(0, 100)
    sns.countplot(x="Sequencing chemistry", data=df, ax=ax5)
    sns.countplot(x="Cohort", data=df, ax=ax6,
                    order = df['Cohort'].value_counts().index)
    # Anonymize the cohorts
    cohorts = ax6.get_xticklabels()
    newCohorts = []
    for i, c in enumerate(cohorts):
        if c.get_text() == "Spector":
            c = "TwinsUK"
        elif c.get_text() != "Health Nucleus":
            c = "C{}".format(i + 1)
        newCohorts.append(c)
    ax6.set_xticklabels(newCohorts)

    for ax in (ax6,):
        ax.set_xticklabels(ax.get_xticklabels(), ha="right", rotation=30)

    for ax in (ax1, ax2, ax3, ax4, ax5, ax6):
        ax.set_title(ax.get_xlabel())
        ax.set_xlabel("")

    plt.tight_layout()

    root = fig.add_axes((0, 0, 1, 1))
    labels = ((.02, .96, "A"),
              (.3, .96, "B"),
              (.6, .96, "C"),
              (.02, .52, "D"),
              (.3, .52, "E"),
              (.6, .52, "F"))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #5
0
def composite(df, sameGenderMZ, sameGenderDZ, size=(16, 24)):
    """Embed both absdiff figures and heritability figures."""
    fig = plt.figure(1, size)

    ax1a = plt.subplot2grid((6, 4), (0, 0), rowspan=2, colspan=1)
    ax2a = plt.subplot2grid((6, 4), (0, 1), rowspan=2, colspan=1)
    ax3a = plt.subplot2grid((6, 4), (0, 2), rowspan=2, colspan=1)
    ax4a = plt.subplot2grid((6, 4), (0, 3), rowspan=2, colspan=1)
    ax1b = plt.subplot2grid((6, 4), (2, 0), rowspan=2, colspan=2)
    ax2b = plt.subplot2grid((6, 4), (2, 2), rowspan=2, colspan=2)
    ax3b = plt.subplot2grid((6, 4), (4, 0), rowspan=2, colspan=2)
    ax4b = plt.subplot2grid((6, 4), (4, 2), rowspan=2, colspan=2)

    # Telomeres
    telomeres = extract_trait(df, "Sample name", "telomeres.Length")
    mzTelomeres = extract_twin_values(sameGenderMZ, telomeres)
    dzTelomeres = extract_twin_values(sameGenderDZ, telomeres)
    plot_paired_values(ax1b, mzTelomeres, dzTelomeres, label="Telomere length")
    plot_abs_diff(ax1a, mzTelomeres, dzTelomeres, label="Telomere length")

    # CCNX
    CCNX = extract_trait(df, "Sample name", "ccn.chrX")
    mzCCNX = extract_twin_values(sameGenderMZ, CCNX, gender="Female")
    dzCCNX = extract_twin_values(sameGenderDZ, CCNX, gender="Female")
    dzCCNX = filter_low_values(dzCCNX, 1.75)
    plot_paired_values(ax2b,
                       mzCCNX,
                       dzCCNX,
                       gender="Female only",
                       label="ChrX copy number")
    plot_abs_diff(ax2a, mzCCNX, dzCCNX, label="ChrX copy number")

    # CCNY
    CCNY = extract_trait(df, "Sample name", "ccn.chrY")
    mzCCNY = extract_twin_values(sameGenderMZ, CCNY, gender="Male")
    dzCCNY = extract_twin_values(sameGenderDZ, CCNY, gender="Male")
    dzCCNY = filter_low_values(dzCCNY, 0.75)

    plot_paired_values(ax3b,
                       mzCCNY,
                       dzCCNY,
                       gender="Male only",
                       label="ChrY copy number")
    plot_abs_diff(ax3a, mzCCNY, dzCCNY, label="ChrY copy number")

    # CCNY
    TRA = extract_trait(df, "Sample name", "TRA.PPM")
    mzTRA = extract_twin_values(sameGenderMZ, TRA)
    dzTRA = extract_twin_values(sameGenderDZ, TRA)
    plot_paired_values(ax4b, mzTRA, dzTRA, label="TCR-$\\alpha$ deletions")
    plot_abs_diff(ax4a, mzTRA, dzTRA, label="TCR-$\\alpha$ deletions")

    plt.tight_layout()

    root = fig.add_axes((0, 0, 1, 1))
    # ABCD absdiff, EFGH heritability
    labels = (
        (0.03, 0.99, "A"),
        (0.27, 0.99, "B"),
        (0.53, 0.99, "C"),
        (0.77, 0.99, "D"),
        (0.03, 0.67, "E"),
        (0.53, 0.67, "F"),
        (0.03, 0.34, "G"),
        (0.53, 0.34, "H"),
    )
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #6
0
def composite_qc(df_orig, size=(16, 12)):
    """Plot composite QC figures"""
    df = df_orig.rename(
        columns={
            "hli_calc_age_sample_taken": "Age",
            "hli_calc_gender": "Gender",
            "eth7_max": "Ethnicity",
            "MeanCoverage": "Mean coverage",
            "Chemistry": "Sequencing chemistry",
            "Release Client": "Cohort",
        })

    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 7), (0, 0), rowspan=1, colspan=2)
    ax2 = plt.subplot2grid((2, 7), (0, 2), rowspan=1, colspan=2)
    ax3 = plt.subplot2grid((2, 7), (0, 4), rowspan=1, colspan=3)
    ax4 = plt.subplot2grid((2, 7), (1, 0), rowspan=1, colspan=2)
    ax5 = plt.subplot2grid((2, 7), (1, 2), rowspan=1, colspan=2)
    ax6 = plt.subplot2grid((2, 7), (1, 4), rowspan=1, colspan=3)

    sns.distplot(df["Age"].dropna(), kde=False, ax=ax1)
    sns.countplot(x="Gender", data=df, ax=ax2)
    sns.countplot(x="Ethnicity",
                  data=df,
                  ax=ax3,
                  order=df["Ethnicity"].value_counts().index)
    sns.distplot(df["Mean coverage"].dropna(), kde=False, ax=ax4)
    ax4.set_xlim(0, 100)
    sns.countplot(x="Sequencing chemistry", data=df, ax=ax5)
    sns.countplot(x="Cohort",
                  data=df,
                  ax=ax6,
                  order=df["Cohort"].value_counts().index)
    # Anonymize the cohorts
    cohorts = ax6.get_xticklabels()
    newCohorts = []
    for i, c in enumerate(cohorts):
        if c.get_text() == "Spector":
            c = "TwinsUK"
        elif c.get_text() != "Health Nucleus":
            c = "C{}".format(i + 1)
        newCohorts.append(c)
    ax6.set_xticklabels(newCohorts)

    for ax in (ax6, ):
        ax.set_xticklabels(ax.get_xticklabels(), ha="right", rotation=30)

    for ax in (ax1, ax2, ax3, ax4, ax5, ax6):
        ax.set_title(ax.get_xlabel())
        ax.set_xlabel("")

    plt.tight_layout()

    root = fig.add_axes((0, 0, 1, 1))
    labels = (
        (0.02, 0.96, "A"),
        (0.3, 0.96, "B"),
        (0.6, 0.96, "C"),
        (0.02, 0.52, "D"),
        (0.3, 0.52, "E"),
        (0.6, 0.52, "F"),
    )
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #7
0
def composite_ccn(df, size=(12, 8)):
    """Plot composite ccn figure"""
    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    mf = df[df["hli_calc_gender"] == "Male"]

    age_label = "Chronological age (yr)"
    ax1.scatter(
        mf["hli_calc_age_sample_taken"],
        mf["ccn.chrX"],
        s=10,
        marker=".",
        color="lightslategray",
    )
    ax1.set_ylim(0.8, 1.1)
    plot_fit_line(ax1, mf["hli_calc_age_sample_taken"], mf["ccn.chrX"])
    ax1.set_ylabel("ChrX copy number")
    ax1.set_title("ChrX copy number in Male")

    ax2.scatter(
        mf["hli_calc_age_sample_taken"],
        mf["ccn.chrY"],
        s=10,
        marker=".",
        color="lightslategray",
    )
    plot_fit_line(ax2, mf["hli_calc_age_sample_taken"], mf["ccn.chrY"])
    ax2.set_ylim(0.8, 1.1)
    ax2.set_ylabel("ChrY copy number")
    ax2.set_title("ChrY copy number in Male")

    ax3.scatter(
        df["hli_calc_age_sample_taken"],
        df["ccn.chr1"],
        s=10,
        marker=".",
        color="lightslategray",
    )
    plot_fit_line(ax3, df["hli_calc_age_sample_taken"], df["ccn.chr1"])
    ax3.set_ylim(1.8, 2.1)
    ax3.set_ylabel("Chr1 copy number")
    ax3.set_title("Chr1 copy number")

    ax4.scatter(
        df["hli_calc_age_sample_taken"],
        df["ccn.chrM"],
        s=10,
        marker=".",
        color="lightslategray",
    )
    plot_fit_line(ax4, df["hli_calc_age_sample_taken"], df["ccn.chrM"])
    ax4.set_ylim(0, 400)
    ax4.set_ylabel("Mitochondria copy number")
    ax4.set_title("Mitochondria copy number")

    from matplotlib.lines import Line2D

    for ax in (ax1, ax2, ax3, ax4):
        ax.set_xlabel(age_label)

    plt.tight_layout()
    root = fig.add_axes((0, 0, 1, 1))
    labels = ((0.02, 0.98, "A"), (0.52, 0.98, "B"), (0.02, 0.5, "C"),
              (0.52, 0.5, "D"))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #8
0
ファイル: age.py プロジェクト: zjwang6/jcvi
def composite_ccn(df, size=(12, 8)):
    """ Plot composite ccn figure
    """
    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    chemistry = ["V1", "V2", "V2.5", float("nan")]
    colors = sns.color_palette("Set2", 8)
    color_map = dict(zip(chemistry, colors))
    mf = df[df["hli_calc_gender"] == "Male"]

    age_label = "Chronological age (yr)"
    ax1.scatter(mf["hli_calc_age_sample_taken"],
                mf["ccn.chrX"],
                s=10,
                marker='.',
                color='lightslategray')
    ax1.set_ylim(0.8, 1.1)
    plot_fit_line(ax1, mf["hli_calc_age_sample_taken"], mf["ccn.chrX"])
    ax1.set_ylabel("ChrX copy number")
    ax1.set_title("ChrX copy number in Male")

    ax2.scatter(mf["hli_calc_age_sample_taken"],
                mf["ccn.chrY"],
                s=10,
                marker='.',
                color='lightslategray')
    plot_fit_line(ax2, mf["hli_calc_age_sample_taken"], mf["ccn.chrY"])
    ax2.set_ylim(0.8, 1.1)
    ax2.set_ylabel("ChrY copy number")
    ax2.set_title("ChrY copy number in Male")

    ax3.scatter(df["hli_calc_age_sample_taken"],
                df["ccn.chr1"],
                s=10,
                marker='.',
                color='lightslategray')
    plot_fit_line(ax3, df["hli_calc_age_sample_taken"], df["ccn.chr1"])
    ax3.set_ylim(1.8, 2.1)
    ax3.set_ylabel("Chr1 copy number")
    ax3.set_title("Chr1 copy number")

    ax4.scatter(df["hli_calc_age_sample_taken"],
                df["ccn.chrM"],
                s=10,
                marker='.',
                color='lightslategray')
    plot_fit_line(ax4, df["hli_calc_age_sample_taken"], df["ccn.chrM"])
    ax4.set_ylim(0, 400)
    ax4.set_ylabel("Mitochondria copy number")
    ax4.set_title("Mitochondria copy number")

    from matplotlib.lines import Line2D
    legend_elements = [Line2D([0], [0], marker='.', color='w', label=chem,
                          markerfacecolor=color) \
                        for (chem, color) in zip(chemistry, colors)[:3]]
    for ax in (ax1, ax2, ax3, ax4):
        ax.set_xlabel(age_label)

    plt.tight_layout()
    root = fig.add_axes((0, 0, 1, 1))
    labels = ((.02, .98, "A"), (.52, .98, "B"), (.02, .5, "C"), (.52, .5, "D"))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
コード例 #9
0
ファイル: age.py プロジェクト: tanghaibao/jcvi
def composite_ccn(df, size=(12, 8)):
    """ Plot composite ccn figure
    """
    fig = plt.figure(1, size)
    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    chemistry = ["V1", "V2", "V2.5", float("nan")]
    colors = sns.color_palette("Set2", 8)
    color_map = dict(zip(chemistry, colors))
    mf = df[df["hli_calc_gender"] == "Male"]

    age_label = "Chronological age (yr)"
    ax1.scatter(mf["hli_calc_age_sample_taken"], mf["ccn.chrX"],
                s=10, marker='.',
                color='lightslategray')
    ax1.set_ylim(0.8, 1.1)
    plot_fit_line(ax1, mf["hli_calc_age_sample_taken"], mf["ccn.chrX"])
    ax1.set_ylabel("ChrX copy number")
    ax1.set_title("ChrX copy number in Male")

    ax2.scatter(mf["hli_calc_age_sample_taken"], mf["ccn.chrY"],
                s=10, marker='.',
                color='lightslategray')
    plot_fit_line(ax2, mf["hli_calc_age_sample_taken"], mf["ccn.chrY"])
    ax2.set_ylim(0.8, 1.1)
    ax2.set_ylabel("ChrY copy number")
    ax2.set_title("ChrY copy number in Male")

    ax3.scatter(df["hli_calc_age_sample_taken"], df["ccn.chr1"],
                s=10, marker='.',
                color='lightslategray')
    plot_fit_line(ax3, df["hli_calc_age_sample_taken"], df["ccn.chr1"])
    ax3.set_ylim(1.8, 2.1)
    ax3.set_ylabel("Chr1 copy number")
    ax3.set_title("Chr1 copy number")

    ax4.scatter(df["hli_calc_age_sample_taken"], df["ccn.chrM"],
                s=10, marker='.',
                color='lightslategray')
    plot_fit_line(ax4, df["hli_calc_age_sample_taken"], df["ccn.chrM"])
    ax4.set_ylim(0, 400)
    ax4.set_ylabel("Mitochondria copy number")
    ax4.set_title("Mitochondria copy number")

    from matplotlib.lines import Line2D
    legend_elements = [Line2D([0], [0], marker='.', color='w', label=chem,
                          markerfacecolor=color) \
                        for (chem, color) in zip(chemistry, colors)[:3]]
    for ax in (ax1, ax2, ax3, ax4):
        ax.set_xlabel(age_label)

    plt.tight_layout()
    root = fig.add_axes((0, 0, 1, 1))
    labels = ((.02, .98, "A"),
              (.52, .98, "B"),
              (.02, .5, "C"),
              (.52, .5, "D"))
    panel_labels(root, labels)
    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()