コード例 #1
0
def test_translation(demo_name, exp_name, data_dir):
    translation_test_init()

    verb_data_accessor = multi_item_verbs.VerbDataAccessor(test_info_dir=osp.join("test", TEST_DATA_DIR, data_dir))

    current_stage = 1

    # info and data for tool stage
    demo_tool_info = verb_data_accessor.get_stage_info(demo_name, current_stage-1)
    demo_tool_data = verb_data_accessor.get_demo_stage_data(demo_tool_info.stage_name)
    exp_tool_info = verb_data_accessor.get_stage_info(exp_name, current_stage-1)
    exp_tool_data = verb_data_accessor.get_demo_stage_data(exp_tool_info.stage_name)

    # info and data for target stage
    demo_target_info = verb_data_accessor.get_stage_info(demo_name, current_stage)
    demo_target_data = verb_data_accessor.get_demo_stage_data(demo_target_info.stage_name)
    exp_target_info = verb_data_accessor.get_stage_info(exp_name, current_stage)
    exp_target_data = verb_data_accessor.get_demo_stage_data(exp_target_info.stage_name)
    
    gripper_data_key = "%s_gripper_tool_frame" % demo_target_info.arms_used

    # point clouds of tool for demo and experiment
    exp_tool_pc = exp_tool_data["object_cloud"][exp_tool_info.item]["xyz"]
    exp_target_pc = exp_target_data["object_cloud"][exp_target_info.item]["xyz"]

    # calculate the transformation from the world frame to the gripper frame in the experiment scene
    world_to_grip_transform = get_world_to_grip_exp_transform(exp_tool_data, gripper_data_key)
    world_to_grip_transform_func = multi_item_make_verb_traj.make_world_to_grip_transform_hmat(world_to_grip_transform)

    warped_traj_resp = multi_item_make_verb_traj.make_traj_multi_stage_do_work(demo_name, exp_target_pc,
                                                                               None, current_stage,
                                                                               demo_tool_info, exp_tool_pc,
                                                                               verb_data_accessor, world_to_grip_transform_func,
                                                                               "tps")

    # assuming that the arms_used for the target stage is 'l' or 'r'
    if demo_target_info.arms_used == 'l':
        warped_grip_traj_mats = [juc.pose_to_hmat(pose) for pose in warped_traj_resp.traj.l_gripper_poses.poses]
    elif demo_target_info.arms_used == 'r':
        warped_grip_traj_mats = [juc.pose_to_hmat(pose) for pose in warped_traj_resp.traj.r_gripper_poses.poses]

    # get the manually measured transformation between the old and new target objects (just a translation for this test)
    params = get_test_params()
    actual_target_translation = jut.translation_matrix(params["translation"])

    # find the expected warped gripper trajectory using the manual translation measurement
    demo_spec_pt_traj_mats = get_demo_spec_pt_traj_mats(demo_tool_info, demo_target_data, gripper_data_key)
    expected_spec_pt_traj = [np.dot(actual_target_translation, traj_mat) for traj_mat in demo_spec_pt_traj_mats]
    expected_gripper_traj = get_expected_gripper_traj(exp_tool_info.special_point, expected_spec_pt_traj)

    result = similar_trajectories(expected_gripper_traj, warped_grip_traj_mats)
    report(result)
コード例 #2
0
ファイル: ros_utils.py プロジェクト: cameronlee/python
def make_kin_tree_from_link(ps,linkname, ns='default_ns',valuedict=None):
    markers = []
    U = get_pr2_urdf()
    link = U.links[linkname]
    
    if link.visual and link.visual.geometry and isinstance(link.visual.geometry,urdf.Mesh):
        rospy.logdebug("%s is a mesh. drawing it.", linkname)
        marker = Marker(type = Marker.MESH_RESOURCE, action = Marker.ADD)
        marker.ns = ns
        marker.header = ps.header        
        
        linkFromGeom = conversions.trans_rot_to_hmat(link.visual.origin.position, transformations.quaternion_from_euler(*link.visual.origin.rotation))
        origFromLink = conversions.pose_to_hmat(ps.pose)
        origFromGeom = np.dot(origFromLink, linkFromGeom)
        
        marker.pose = conversions.hmat_to_pose(origFromGeom)           
        marker.scale = gm.Vector3(1,1,1)
        marker.color = stdm.ColorRGBA(1,1,0,.5)
        marker.id = 0
        marker.lifetime = rospy.Duration()
        marker.mesh_resource = str(link.visual.geometry.filename)
        marker.mesh_use_embedded_materials = False
        markers.append(marker)
    else:
        rospy.logdebug("%s is not a mesh", linkname)
        
    if U.child_map.has_key(linkname):
        for (cjoint,clink) in U.child_map[linkname]:
            markers.extend(make_kin_tree_from_joint(ps,cjoint,ns=ns,valuedict=valuedict))
            
    return markers    
コード例 #3
0
ファイル: ros_utils.py プロジェクト: cameronlee/python
def make_kin_tree_from_joint(ps,jointname, ns='default_ns',valuedict=None):
    rospy.logdebug("joint: %s"%jointname)
    U = get_pr2_urdf()
        
    joint = U.joints[jointname]
    joint.origin = joint.origin or urdf.Pose()
    if not joint.origin.position: joint.origin.position = [0,0,0]
    if not joint.origin.rotation: joint.origin.rotation = [0,0,0]
   
    parentFromChild = conversions.trans_rot_to_hmat(joint.origin.position, transformations.quaternion_from_euler(*joint.origin.rotation))

    childFromRotated = np.eye(4)
    if valuedict and jointname in valuedict:        
        
        if joint.joint_type == 'revolute' or joint.joint_type == 'continuous':
            childFromRotated = transformations.rotation_matrix(valuedict[jointname], joint.axis)
        elif joint.joint_type == 'prismatic':
            childFromRotated = transformations.translation_matrix(np.array(joint.axis)* valuedict[jointname]) 
            
    parentFromRotated = np.dot(parentFromChild, childFromRotated)            
    originFromParent = conversions.pose_to_hmat(ps.pose)
    originFromRotated = np.dot(originFromParent, parentFromRotated)
    
    newps = gm.PoseStamped()
    newps.header = ps.header
    newps.pose = conversions.hmat_to_pose(originFromRotated)
    
    return make_kin_tree_from_link(newps,joint.child,ns=ns,valuedict=valuedict)
コード例 #4
0
ファイル: ik_functions.py プロジェクト: warriorarmentaix/lfd
def do_traj_ik_graph_search(pr2, lr, gripper_poses):
    manip = get_manipulator(pr2, lr)
    hmats = [juc.pose_to_hmat(pose) for pose in gripper_poses]

    def ikfunc(hmat):
        return traj_ik_graph_search.ik_for_link(hmat, manip, "%s_gripper_tool_frame"%lr, return_all_solns=True)

    pr2.update_rave()
    start_joints = pr2.robot.GetDOFValues(manip.GetArmJoints())

    robot = manip.GetRobot()
    env = robot.GetEnv()

    report = rave.CollisionReport()
    link_info = []

    def nodecost(joints):
        robot.SetDOFValues(joints, manip.GetArmJoints())
        return 100*env.CheckCollision(robot)
        
    paths, costs, timesteps = traj_ik_graph_search.traj_cart2joint(hmats, ikfunc, start_joints=start_joints, nodecost=nodecost)
    
    i_best = np.argmin(costs)
    print "lowest cost of initial trajs:", costs[i_best]
    best_path = paths[i_best]

    return best_path
コード例 #5
0
ファイル: ros_utils.py プロジェクト: warriorarmentaix/lfd
def make_kin_tree_from_joint(ps, jointname, ns='default_ns', valuedict=None):
    rospy.logdebug("joint: %s" % jointname)
    U = get_pr2_urdf()

    joint = U.joints[jointname]
    joint.origin = joint.origin or urdf.Pose()
    if not joint.origin.position: joint.origin.position = [0, 0, 0]
    if not joint.origin.rotation: joint.origin.rotation = [0, 0, 0]

    parentFromChild = conversions.trans_rot_to_hmat(
        joint.origin.position,
        transformations.quaternion_from_euler(*joint.origin.rotation))

    childFromRotated = np.eye(4)
    if valuedict and jointname in valuedict:

        if joint.joint_type == 'revolute' or joint.joint_type == 'continuous':
            childFromRotated = transformations.rotation_matrix(
                valuedict[jointname], joint.axis)
        elif joint.joint_type == 'prismatic':
            childFromRotated = transformations.translation_matrix(
                np.array(joint.axis) * valuedict[jointname])

    parentFromRotated = np.dot(parentFromChild, childFromRotated)
    originFromParent = conversions.pose_to_hmat(ps.pose)
    originFromRotated = np.dot(originFromParent, parentFromRotated)

    newps = gm.PoseStamped()
    newps.header = ps.header
    newps.pose = conversions.hmat_to_pose(originFromRotated)

    return make_kin_tree_from_link(newps,
                                   joint.child,
                                   ns=ns,
                                   valuedict=valuedict)
コード例 #6
0
def test_cup_pour(demo_name, exp_name):
    test_cup_pour_init()

    verb_data_accessor = multi_item_verbs.VerbDataAccessor(test=True)

    current_stage = 1
    gripper_data_key = "r_gripper_tool_frame"

    # info and data for previous stage
    prev_demo_info = verb_data_accessor.get_stage_info(demo_name, current_stage-1)
    prev_demo_data = verb_data_accessor.get_demo_data(prev_demo_info.stage_name)
    prev_exp_info = verb_data_accessor.get_stage_info(exp_name, current_stage-1)
    prev_exp_data = verb_data_accessor.get_demo_data(prev_exp_info.stage_name)

    # info and data for current stage
    cur_demo_info = verb_data_accessor.get_stage_info(demo_name, current_stage)
    cur_demo_data = verb_data_accessor.get_demo_data(cur_demo_info.stage_name)
    cur_exp_info = verb_data_accessor.get_stage_info(exp_name, current_stage)
    cur_exp_data = verb_data_accessor.get_demo_data(cur_exp_info.stage_name)
    
    # point clouds of tool for demo and experiment
    prev_exp_pc = prev_exp_data["object_clouds"][prev_exp_info.item]["xyz"]
    cur_exp_pc = cur_exp_data["object_clouds"][cur_exp_info.item]["xyz"]

    # calculate the transformation from the world frame to the gripper frame
    prev_exp_gripper_pos = prev_exp_data[gripper_data_key]["position"][-1]
    prev_exp_gripper_orien = prev_exp_data[gripper_data_key]["orientation"][-1]
    prev_world_to_gripper_trans = np.linalg.inv(juc.trans_rot_to_hmat(prev_exp_gripper_pos, prev_exp_gripper_orien))
    gripper_frame_trans = make_verb_traj.make_to_gripper_frame_hmat(prev_world_to_gripper_trans)

    warped_traj_resp = make_verb_traj.make_traj_multi_stage_do_work(cur_demo_info, [cur_exp_pc], None, current_stage, prev_demo_info, [prev_exp_pc], verb_data_accessor, gripper_frame_trans)

    # get the actual transformation between the old and new target objects (just a translation for this test)
    params = get_test_params()
    translation = params['translation']
    actual_target_translation_matrix = jut.translation_matrix(translation)

    # get the demo special point trajectory
    cur_demo_gripper_traj_xyzs = cur_demo_data[gripper_data_key]["position"]
    cur_demo_gripper_traj_oriens = cur_demo_data[gripper_data_key]["orientation"]
    cur_demo_gripper_traj_mats = [juc.trans_rot_to_hmat(trans, orien) for (trans, orien) in zip(cur_demo_gripper_traj_xyzs, cur_demo_gripper_traj_oriens)]
    prev_demo_spec_pt_translation = jut.translation_matrix(np.array(prev_demo_info.special_point))
    cur_demo_spec_pt_traj_as_mats = [np.dot(traj_mat, prev_demo_spec_pt_translation) for traj_mat in cur_demo_gripper_traj_mats]

    # get the expected experiment special point trajectory
    expected_spec_pt_traj = [np.dot(actual_target_translation_matrix, traj_mat) for traj_mat in cur_demo_spec_pt_traj_as_mats]

    # get the expected experiment gripper trajectory
    prev_exp_spec_pt_translation = jut.translation_matrix(np.array(prev_exp_info.special_point))
    inv_cur_exp_spec_pt_translation = np.linalg.inv(prev_exp_spec_pt_translation)
    expected_gripper_traj = [np.dot(traj_mat, inv_cur_exp_spec_pt_translation) for traj_mat in expected_spec_pt_traj]

    # compare the expected new special point trajectory to the result of make_traj_multi_stage
    result_traj = warped_traj_resp.traj
    cur_exp_traj_as_mats = [juc.pose_to_hmat(pose) for pose in result_traj.r_gripper_poses.poses]

    report(similar_trajectories(expected_gripper_traj, cur_exp_traj_as_mats))
コード例 #7
0
def prepend_path_to_start(current_pos, gripper_poses, gripper_angles, n_steps):
    before_traj = get_lin_interp_poses(current_pos,
                                       juc.pose_to_hmat(gripper_poses[0]),
                                       n_steps)
    prepended_gripper_poses = np.concatenate(
        (np.array(before_traj), gripper_poses))
    updated_angles = np.concatenate(
        (np.ones(n_steps) * gripper_angles[0], gripper_angles))
    return prepended_gripper_poses, updated_angles
コード例 #8
0
ファイル: ik_functions.py プロジェクト: warriorarmentaix/lfd
def do_traj_ik_graph_search_opt(pr2, lr, gripper_poses):
    gripper_poses = [pose for i, pose in enumerate(gripper_poses) if i % 20 == 0]
    graph_search_res = do_traj_ik_graph_search(pr2, lr, gripper_poses)
    
    hmats = [juc.pose_to_hmat(pose) for pose in gripper_poses]
    poses = rave.poseFromMatrices(hmats)
    quats = poses[:,:4]
    xyzs = poses[:,4:7]

    manip_name = {"r":"rightarm", "l":"leftarm"}[lr]
    request = get_ik_request(manip_name, "%s_gripper_tool_frame"%lr, 
                             xyzs[-1], quats[-1], graph_search_res, xyzs, quats)

    s = json.dumps(request)
    print "REQUEST:", s
    pr2.robot.SetDOFValues(graph_search_res[0], pr2.robot.GetManipulator(manip_name).GetArmIndices())
    trajoptpy.SetInteractive(True);
    prob = trajoptpy.ConstructProblem(s, pr2.env)
    result = trajoptpy.OptimizeProblem(prob)
コード例 #9
0
ファイル: exec_verb_traj.py プロジェクト: hojonathanho/python
def do_traj_ik_graph_search(lr, gripper_poses):
    hmats = [conversions.pose_to_hmat(pose) for pose in gripper_poses]

    def ikfunc(hmat):
        return traj_ik_graph_search.ik_for_link(hmat, manip, "%s_gripper_tool_frame"%lr, return_all_solns=True)

    manip = get_manipulator(lr)
    start_joints = Globals.pr2.robot.GetDOFValues(manip.GetArmJoints())

    def nodecost(joints):
        robot = manip.GetRobot()
        robot.SetDOFValues(joints, manip.GetArmJoints())
        return 100*robot.GetEnv().CheckCollision(robot)                

    paths, costs, timesteps = traj_ik_graph_search.traj_cart2joint(hmats, ikfunc, start_joints=start_joints, nodecost=nodecost)

    i_best = np.argmin(costs)
    print "lowest cost of initial trajs:", costs[i_best]
    path_init = paths[i_best]
    return path_init
コード例 #10
0
ファイル: ros_utils.py プロジェクト: warriorarmentaix/lfd
def make_kin_tree_from_link(ps, linkname, ns='default_ns', valuedict=None):
    markers = []
    U = get_pr2_urdf()
    link = U.links[linkname]

    if link.visual and link.visual.geometry and isinstance(
            link.visual.geometry, urdf.Mesh):
        rospy.logdebug("%s is a mesh. drawing it.", linkname)
        marker = Marker(type=Marker.MESH_RESOURCE, action=Marker.ADD)
        marker.ns = ns
        marker.header = ps.header

        linkFromGeom = conversions.trans_rot_to_hmat(
            link.visual.origin.position,
            transformations.quaternion_from_euler(
                *link.visual.origin.rotation))
        origFromLink = conversions.pose_to_hmat(ps.pose)
        origFromGeom = np.dot(origFromLink, linkFromGeom)

        marker.pose = conversions.hmat_to_pose(origFromGeom)
        marker.scale = gm.Vector3(1, 1, 1)
        marker.color = stdm.ColorRGBA(1, 1, 0, .5)
        marker.id = 0
        marker.lifetime = rospy.Duration()
        marker.mesh_resource = str(link.visual.geometry.filename)
        marker.mesh_use_embedded_materials = False
        markers.append(marker)
    else:
        rospy.logdebug("%s is not a mesh", linkname)

    if U.child_map.has_key(linkname):
        for (cjoint, clink) in U.child_map[linkname]:
            markers.extend(
                make_kin_tree_from_joint(ps,
                                         cjoint,
                                         ns=ns,
                                         valuedict=valuedict))

    return markers
コード例 #11
0
def test_translation(demo_name, exp_name, data_dir):
    translation_test_init()

    verb_data_accessor = multi_item_verbs.VerbDataAccessor(
        test_info_dir=osp.join("test", TEST_DATA_DIR, data_dir))

    current_stage = 1

    # info and data for tool stage
    demo_tool_info = verb_data_accessor.get_stage_info(demo_name,
                                                       current_stage - 1)
    demo_tool_data = verb_data_accessor.get_demo_stage_data(
        demo_tool_info.stage_name)
    exp_tool_info = verb_data_accessor.get_stage_info(exp_name,
                                                      current_stage - 1)
    exp_tool_data = verb_data_accessor.get_demo_stage_data(
        exp_tool_info.stage_name)

    # info and data for target stage
    demo_target_info = verb_data_accessor.get_stage_info(
        demo_name, current_stage)
    demo_target_data = verb_data_accessor.get_demo_stage_data(
        demo_target_info.stage_name)
    exp_target_info = verb_data_accessor.get_stage_info(
        exp_name, current_stage)
    exp_target_data = verb_data_accessor.get_demo_stage_data(
        exp_target_info.stage_name)

    gripper_data_key = "%s_gripper_tool_frame" % demo_target_info.arms_used

    # point clouds of tool for demo and experiment
    exp_tool_pc = exp_tool_data["object_cloud"][exp_tool_info.item]["xyz"]
    exp_target_pc = exp_target_data["object_cloud"][
        exp_target_info.item]["xyz"]

    # calculate the transformation from the world frame to the gripper frame in the experiment scene
    world_to_grip_transform = get_world_to_grip_exp_transform(
        exp_tool_data, gripper_data_key)
    world_to_grip_transform_func = multi_item_make_verb_traj.make_world_to_grip_transform_hmat(
        world_to_grip_transform)

    warped_traj_resp = multi_item_make_verb_traj.make_traj_multi_stage_do_work(
        demo_name, exp_target_pc, None, current_stage, demo_tool_info,
        exp_tool_pc, verb_data_accessor, world_to_grip_transform_func, "tps")

    # assuming that the arms_used for the target stage is 'l' or 'r'
    if demo_target_info.arms_used == 'l':
        warped_grip_traj_mats = [
            juc.pose_to_hmat(pose)
            for pose in warped_traj_resp.traj.l_gripper_poses.poses
        ]
    elif demo_target_info.arms_used == 'r':
        warped_grip_traj_mats = [
            juc.pose_to_hmat(pose)
            for pose in warped_traj_resp.traj.r_gripper_poses.poses
        ]

    # get the manually measured transformation between the old and new target objects (just a translation for this test)
    params = get_test_params()
    actual_target_translation = jut.translation_matrix(params["translation"])

    # find the expected warped gripper trajectory using the manual translation measurement
    demo_spec_pt_traj_mats = get_demo_spec_pt_traj_mats(
        demo_target_data, gripper_data_key)
    expected_spec_pt_traj = [
        np.dot(actual_target_translation, traj_mat)
        for traj_mat in demo_spec_pt_traj_mats
    ]
    expected_gripper_traj = get_expected_gripper_traj(
        exp_tool_info.special_point, expected_spec_pt_traj)

    result = similar_trajectories(expected_gripper_traj, warped_grip_traj_mats)
    report(result)
コード例 #12
0
def prepend_path_to_start(current_pos, gripper_poses, gripper_angles, n_steps):
    before_traj = get_lin_interp_poses(current_pos, juc.pose_to_hmat(gripper_poses[0]), n_steps)
    prepended_gripper_poses = np.concatenate((np.array(before_traj), gripper_poses))
    updated_angles = np.concatenate((np.ones(n_steps) * gripper_angles[0], gripper_angles))
    return prepended_gripper_poses, updated_angles