def check_hasattr(node, suite): try: assert suite.start_pos <= jedi_name.start_pos < suite.end_pos assert node.type in ('power', 'atom_expr') base = node.children[0] assert base.type == 'name' and base.value == 'hasattr' trailer = node.children[1] assert trailer.type == 'trailer' arglist = trailer.children[1] assert arglist.type == 'arglist' from jedi.inference.arguments import TreeArguments args = TreeArguments(node_context.inference_state, node_context, arglist) unpacked_args = list(args.unpack()) # Arguments should be very simple assert len(unpacked_args) == 2 # Check name key, lazy_value = unpacked_args[1] names = list(lazy_value.infer()) assert len(names) == 1 and is_string(names[0]) assert names[0].get_safe_value() == payload[1].value # Check objects key, lazy_value = unpacked_args[0] objects = lazy_value.infer() return payload[0] in objects except AssertionError: return False
def exact_key_items(self): """ Returns a generator of tuples like dict.items(), where the key is resolved (as a string) and the values are still lazy values. """ for key_node, value in self.get_tree_entries(): for key in self._defining_context.infer_node(key_node): if is_string(key): yield key.get_safe_value(), LazyTreeValue(self._defining_context, value)
def resolve_forward_references(value_set): for value in value_set: if is_string(value): from jedi.inference.gradual.annotation import _get_forward_reference_node node = _get_forward_reference_node(defining_context, value.get_safe_value()) if node is not None: for c in defining_context.infer_node(node): yield c else: yield value
def _paths_from_assignment(module_context, expr_stmt): """ Extracts the assigned strings from an assignment that looks as follows:: sys.path[0:0] = ['module/path', 'another/module/path'] This function is in general pretty tolerant (and therefore 'buggy'). However, it's not a big issue usually to add more paths to Jedi's sys_path, because it will only affect Jedi in very random situations and by adding more paths than necessary, it usually benefits the general user. """ for assignee, operator in zip(expr_stmt.children[::2], expr_stmt.children[1::2]): try: assert operator in ['=', '+='] assert assignee.type in ('power', 'atom_expr') and \ len(assignee.children) > 1 c = assignee.children assert c[0].type == 'name' and c[0].value == 'sys' trailer = c[1] assert trailer.children[0] == '.' and trailer.children[ 1].value == 'path' # TODO Essentially we're not checking details on sys.path # manipulation. Both assigment of the sys.path and changing/adding # parts of the sys.path are the same: They get added to the end of # the current sys.path. """ execution = c[2] assert execution.children[0] == '[' subscript = execution.children[1] assert subscript.type == 'subscript' assert ':' in subscript.children """ except AssertionError: continue cn = ContextualizedNode(module_context.create_context(expr_stmt), expr_stmt) for lazy_value in cn.infer().iterate(cn): for value in lazy_value.infer(): if is_string(value): abs_path = _abs_path(module_context, value.get_safe_value()) if abs_path is not None: yield abs_path
def infer_annotation(context, annotation): """ Inferes an annotation node. This means that it inferes the part of `int` here: foo: int = 3 Also checks for forward references (strings) """ value_set = context.infer_node(annotation) if len(value_set) != 1: debug.warning("Inferred typing index %s should lead to 1 object, " " not %s" % (annotation, value_set)) return value_set inferred_value = list(value_set)[0] if is_string(inferred_value): result = _get_forward_reference_node(context, inferred_value.get_safe_value()) if result is not None: return context.infer_node(result) return value_set
def _infer_comparison_part(inference_state, context, left, operator, right): l_is_num = is_number(left) r_is_num = is_number(right) if isinstance(operator, str): str_operator = operator else: str_operator = str(operator.value) if str_operator == '*': # for iterables, ignore * operations if isinstance(left, iterable.Sequence) or is_string(left): return ValueSet([left]) elif isinstance(right, iterable.Sequence) or is_string(right): return ValueSet([right]) elif str_operator == '+': if l_is_num and r_is_num or is_string(left) and is_string(right): return left.execute_operation(right, str_operator) elif _is_list(left) and _is_list(right) or _is_tuple( left) and _is_tuple(right): return ValueSet( [iterable.MergedArray(inference_state, (left, right))]) elif str_operator == '-': if l_is_num and r_is_num: return left.execute_operation(right, str_operator) elif str_operator == '%': # With strings and numbers the left type typically remains. Except for # `int() % float()`. return ValueSet([left]) elif str_operator in COMPARISON_OPERATORS: if left.is_compiled() and right.is_compiled(): # Possible, because the return is not an option. Just compare. result = left.execute_operation(right, str_operator) if result: return result else: if str_operator in ('is', '!=', '==', 'is not'): operation = COMPARISON_OPERATORS[str_operator] bool_ = operation(left, right) # Only if == returns True or != returns False, we can continue. # There's no guarantee that they are not equal. This can help # in some cases, but does not cover everything. if (str_operator in ('is', '==')) == bool_: return ValueSet([_bool_to_value(inference_state, bool_)]) if isinstance(left, VersionInfo): version_info = _get_tuple_ints(right) if version_info is not None: bool_result = compiled.access.COMPARISON_OPERATORS[ operator](inference_state.environment.version_info, tuple(version_info)) return ValueSet( [_bool_to_value(inference_state, bool_result)]) return ValueSet([ _bool_to_value(inference_state, True), _bool_to_value(inference_state, False) ]) elif str_operator in ('in', 'not in'): return NO_VALUES def check(obj): """Checks if a Jedi object is either a float or an int.""" return isinstance(obj, TreeInstance) and \ obj.name.string_name in ('int', 'float') # Static analysis, one is a number, the other one is not. if str_operator in ('+', '-') and l_is_num != r_is_num \ and not (check(left) or check(right)): message = "TypeError: unsupported operand type(s) for +: %s and %s" analysis.add(context, 'type-error-operation', operator, message % (left, right)) if left.is_class() or right.is_class(): return NO_VALUES method_name = operator_to_magic_method[str_operator] magic_methods = left.py__getattribute__(method_name) if magic_methods: result = magic_methods.execute_with_values(right) if result: return result if not magic_methods: reverse_method_name = reverse_operator_to_magic_method[str_operator] magic_methods = right.py__getattribute__(reverse_method_name) result = magic_methods.execute_with_values(left) if result: return result result = ValueSet([left, right]) debug.dbg('Used operator %s resulting in %s', operator, result) return result
def _infer_comparison_part(inference_state, context, left, operator, right): l_is_num = is_number(left) r_is_num = is_number(right) if isinstance(operator, unicode): str_operator = operator else: str_operator = force_unicode(str(operator.value)) if str_operator == '*': # for iterables, ignore * operations if isinstance(left, iterable.Sequence) or is_string(left): return ValueSet([left]) elif isinstance(right, iterable.Sequence) or is_string(right): return ValueSet([right]) elif str_operator == '+': if l_is_num and r_is_num or is_string(left) and is_string(right): return ValueSet([left.execute_operation(right, str_operator)]) elif _is_tuple(left) and _is_tuple(right) or _is_list( left) and _is_list(right): return ValueSet( [iterable.MergedArray(inference_state, (left, right))]) elif str_operator == '-': if l_is_num and r_is_num: return ValueSet([left.execute_operation(right, str_operator)]) elif str_operator == '%': # With strings and numbers the left type typically remains. Except for # `int() % float()`. return ValueSet([left]) elif str_operator in COMPARISON_OPERATORS: if left.is_compiled() and right.is_compiled(): # Possible, because the return is not an option. Just compare. try: return ValueSet([left.execute_operation(right, str_operator)]) except TypeError: # Could be True or False. pass else: if str_operator in ('is', '!=', '==', 'is not'): operation = COMPARISON_OPERATORS[str_operator] bool_ = operation(left, right) return ValueSet([_bool_to_value(inference_state, bool_)]) if isinstance(left, VersionInfo): version_info = _get_tuple_ints(right) if version_info is not None: bool_result = compiled.access.COMPARISON_OPERATORS[ operator](inference_state.environment.version_info, tuple(version_info)) return ValueSet( [_bool_to_value(inference_state, bool_result)]) return ValueSet([ _bool_to_value(inference_state, True), _bool_to_value(inference_state, False) ]) elif str_operator == 'in': return NO_VALUES def check(obj): """Checks if a Jedi object is either a float or an int.""" return isinstance(obj, TreeInstance) and \ obj.name.string_name in ('int', 'float') # Static analysis, one is a number, the other one is not. if str_operator in ('+', '-') and l_is_num != r_is_num \ and not (check(left) or check(right)): message = "TypeError: unsupported operand type(s) for +: %s and %s" analysis.add(context, 'type-error-operation', operator, message % (left, right)) result = ValueSet([left, right]) debug.dbg('Used operator %s resulting in %s', operator, result) return result