コード例 #1
0
 def __init__(self, robot_name):
     self.robotName = robot_name
     self.compGeo = ComputationalGeometry()
     self.compDyn = ComputationalDynamics(self.robotName)
     self.footPlanning = FootholdPlanningInterface()
     self.math = Math()
     self.dog = DogInterface()
     self.rbd = RigidBodyDynamics()
コード例 #2
0
constraint_mode_IP = [
    'FRICTION_AND_ACTUATION', 'ONLY_FRICTION', 'ONLY_ACTUATION',
    'FRICTION_AND_ACTUATION'
]

useVariableJacobian = False
# number of decision variables of the problem
n = nc * 6
''' parameters to be tuned'''
g = 9.81
total_mass = 85.
mu = 0.8

axisZ = array([[0.0], [0.0], [1.0]])

comp_dyn = ComputationalDynamics()

number_of_tests = 10
tests3contacts = np.zeros((number_of_tests))
tests4contacts = np.zeros((number_of_tests))

params = IterativeProjectionParameters()

for iter in range(0, number_of_tests):
    ''' random normals '''
    randRoll = np.random.normal(0.0, 0.2)
    randPitch = np.random.normal(0.0, 0.2)
    randYaw = np.random.normal(0.0, 0.2)
    n1 = np.transpose(
        np.transpose(math.rpyToRot(randRoll, randPitch, randYaw)).dot(axisZ))
    randRoll = np.random.normal(0.0, 0.2)
コード例 #3
0
possible constraints for each foot:
 ONLY_ACTUATION = only joint-torque limits are enforces
 ONLY_FRICTION = only friction cone constraints are enforced
 FRICTION_AND_ACTUATION = both friction cone constraints and joint-torque limits
'''
constraint_mode_IP = [
    'FRICTION_AND_ACTUATION', 'FRICTION_AND_ACTUATION',
    'FRICTION_AND_ACTUATION', 'FRICTION_AND_ACTUATION'
]

# number of decision variables of the problem
# n = nc*6
comWF = np.array([0.0, -0.0, 0.0])
''' Set the robot's name (either 'hyq', 'hyqreal' or 'anymal')'''
robot_name = 'anymal'
comp_dyn = ComputationalDynamics(robot_name)

stackedForcePolytopesLF = np.zeros((3, 8))
stackedFootPosLF = []
for lf_x in np.arange(-0.2, 0.2, 0.1):
    """ contact points in the World Frame"""
    LF_foot = np.array([lf_x, 0.2, -0.4])
    RF_foot = np.array([0.3, -0.2, -0.4])
    LH_foot = np.array([-0.3, 0.2, -0.4])
    RH_foot = np.array([-0.3, -0.2, -0.4])
    print LF_foot
    contacts = np.vstack((LF_foot, RF_foot, LH_foot, RH_foot))

    # contacts = contactsToStack[0:nc+1, :]
    # print contacts
    ''' parameters to be tuned'''
コード例 #4
0
math = Math()

print("''' ONLY_FRICTION, 3 CONTACTS'''")

# number of generators, i.e. rays used to linearize the friction cone
ng = 4

useVariableJacobian = False
''' parameters to be tuned'''
g = 9.81
total_mass = 85.
mu = 0.8

axisZ = array([[0.0], [0.0], [1.0]])

comp_dyn = ComputationalDynamics('anymal')

number_of_tests = 1000
onlyFrictionTests3contacts = np.zeros((number_of_tests))
onlyFrictionTests4contacts = np.zeros((number_of_tests))
onlyActuationTests3contacts = np.zeros((number_of_tests))
onlyActuationTests4contacts = np.zeros((number_of_tests))
frictionAndActuation3contacts = np.zeros((number_of_tests))
frictionAndActuation4contacts = np.zeros((number_of_tests))

params = IterativeProjectionParameters()


def perform_statistics(number_of_tests, number_of_contacts, _constraint_mode):
    computation_times = np.zeros((number_of_tests))
    params.setConstraintModes(constraint_mode_IP)
コード例 #5
0
n4 = np.transpose(np.transpose(math.rpyToRot(0.0, 0.0, 0.0)).dot(axisZ))  # RH
normals = np.vstack([n1, n2, n3, n4])
''' torque limits for each leg (this code assumes a hyq-like design, i.e. three joints per leg)
HAA = Hip Abduction Adduction
HFE = Hip Flextion Extension
KFE = Knee Flextion Extension
'''
LF_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
RF_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
LH_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
RH_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
torque_limits = np.array([LF_tau_lim, RF_tau_lim, LH_tau_lim, RH_tau_lim])
''' extForceW is an optional external pure force (no external torque for now) applied on the CoM of the robot.'''
extForceW = np.array([0.0, 0.0, 0.0])  # units are Nm

comp_dyn = ComputationalDynamics(robot_name)
'''You now need to fill the 'params' object with all the relevant 
    informations needed for the computation of the IP'''
params = IterativeProjectionParameters()

params.setContactsPosWF(contacts)
params.setCoMPosWF(comWF)
params.setTorqueLims(torque_limits)
params.setActiveContacts(stanceFeet)
params.setConstraintModes(constraint_mode_IP)
params.setContactNormals(normals)
params.setFrictionCoefficient(mu)
params.setNumberOfFrictionConesEdges(ng)
params.setTotalMass(trunk_mass)
params.externalForceWF = extForceW  # params.externalForceWF is actually used anywhere at the moment
コード例 #6
0
 def __init__(self):
     self.compDyn = ComputationalDynamics()
コード例 #7
0
class PathIterativeProjection:
    def __init__(self):
        self.compDyn = ComputationalDynamics()
        
    def setup_path_iterative_projection(self, params):
        ''' parameters to be tuned'''
        g = 9.81
        ng = params.getNumberOfFrictionConesEdges();
        proj, eq, ineq, actuation_polygons, isIKoutOfWorkSpace = self.compDyn.setup_iterative_projection(params, False)

        if isIKoutOfWorkSpace:
            lp = 0
        else:
            max_radius=1e5
            (E, f), (A, b), (C, d) = proj, ineq, eq
            assert E.shape[0] == f.shape[0] == 2
            # Inequality constraints: A_ext * [ x  u  v ] <= b_ext iff
            # (1) A * x <= b and (2) |u|, |v| <= max_radius
            A_ext = zeros((A.shape[0] + 4, A.shape[1] + 2))
            A_ext[:-4, :-2] = A
            A_ext[-4, -2] = 1
            A_ext[-3, -2] = -1
            A_ext[-2, -1] = 1
            A_ext[-1, -1] = -1
            A_ext = cvxopt.matrix(A_ext)
            
            b_ext = zeros(b.shape[0] + 4)
            b_ext[:-4] = b
            b_ext[-4:] = array([max_radius] * 4)
            b_ext = cvxopt.matrix(b_ext)
            
            # Equality constraints: C_ext * [ x  u  v ] == d_ext iff
            # (1) C * x == d and (2) [ u  v ] == E * x + f
            C_ext = zeros((C.shape[0] + 2, C.shape[1] + 2))
            C_ext[:-2, :-2] = C
            C_ext[-2:, :-2] = E[:2]
            C_ext[-2:, -2:] = array([[-1, 0], [0, -1]])
            C_ext = cvxopt.matrix(C_ext)
            
            d_ext = zeros(d.shape[0] + 2)
            d_ext[:-2] = d
            d_ext[-2:] = -f[:2]
            d_ext = cvxopt.matrix(d_ext)
            
            lp_obj = cvxopt.matrix(zeros(A.shape[1] + 2))
            lp = lp_obj, A_ext, b_ext, C_ext, d_ext
#        print 'act pol ',lp
#        print 'a', actuation_polygons, trunk_mass, isIKoutOfWorkSpace
        
        return lp, actuation_polygons/params.getTotalMass(), isIKoutOfWorkSpace

    def optimize_direction_variable_constraint(self, lp, vdir, solver=GLPK_IF_AVAILABLE):
        #print 'I am hereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee'
        """
        Optimize in one direction.

        Parameters
        ----------
        vdir : (3,) array
            Direction in which the optimization is performed.
        lp : array tuple
            Tuple `(q, G, h, A, b)` defining the LP. See
            :func:`pypoman.lp..solve_lp` for details.
        solver : string, optional
            Backend LP solver to call.

        Returns
        -------
        succ : bool
            Success boolean.
        z : (3,) array, or 0
            Maximum vertex of the polygon in the direction `vdir`, or 0 in case of
        solver failure.
        """
        """ contact points """
            
        lp_q, lp_Gextended, lp_hextended, lp_A, lp_b = lp
        lp_q[-2] = -vdir[0]
        lp_q[-1] = -vdir[1]
        x = solve_lp(lp_q, lp_Gextended, lp_hextended, lp_A, lp_b, solver=solver)
        tempSolution = x[-2:]
        
        return tempSolution
        #return comWorld[0:2], errorNorm


    def optimize_angle_variable_constraint(self, lp, theta, solver=GLPK_IF_AVAILABLE):
        
        """
        Optimize in one direction.
        
        Parameters
        ----------
        theta : scalar
            Angle of the direction in which the optimization is performed.
        lp : array tuple
            Tuple `(q, G, h, A, b)` defining the LP. See
            :func:`pypoman.lp..solve_lp` for details.
        solver : string, optional
            Backend LP solver to call.

        Returns
        -------
        succ : bool
            Success boolean.
        z : (3,) array, or 0
            Maximum vertex of the polygon in the direction `vdir`, or 0 in case of
            solver failure.
        """
        #print "Optimize angle!!!!!!!!!!!!!!!!!!!!!!"
        d = array([cos(theta), sin(theta)])
        z = self.optimize_direction_variable_constraint(lp, d, solver=solver)
        return z


    def compute_polygon_variable_constraint(self, params, max_iter=50, solver=GLPK_IF_AVAILABLE):
        """
        Expand a polygon iteratively.
    
        Parameters
        ----------
        lp : array tuple
            Tuple `(q, G, h, A, b)` defining the linear program. See
            :func:`pypoman.lp.solve_lp` for details.
        max_iter : integer, optional
            Maximum number of calls to the LP solver.
        solver : string, optional
            Name of backend LP solver.
    
        Returns
        -------
        poly : Polygon
            Output polygon.
        """
    
        total_mass = params.getTotalMass()
#        mu = params.getFrictionCoeffcient()

#        axisZ= array([[0.0], [0.0], [1.0]])
#        math = Math()
#        n1 = np.transpose(np.transpose(math.rpyToRot(0.0,0.0,0.0)).dot(axisZ))
#        n2 = np.transpose(np.transpose(math.rpyToRot(0.0,0.0,0.0)).dot(axisZ))
#        n3 = np.transpose(np.transpose(math.rpyToRot(0.0,0.0,0.0)).dot(axisZ))
#        n4 = np.transpose(np.transpose(math.rpyToRot(0.0,0.0,0.0)).dot(axisZ))
#        # %% Cell 2
#        normals = np.vstack([n1, n2, n3, n4])
#        normals = params.getNormals()
            
        iterProj = PathIterativeProjection()
        
        lp, actuation_polygons, isOutOfWorkspace = iterProj.setup_path_iterative_projection(params)
        
        if isOutOfWorkspace:
            return False
        else:
            two_pi = 2 * pi
            theta = pi * random()
            init_vertices = [self.optimize_angle_variable_constraint(lp, theta, solver)]
            step = two_pi / 3
            while len(init_vertices) < 3 and max_iter >= 0:
                theta += step
                if theta >= two_pi:
                    step *= 0.25 + 0.5 * random()
                    theta += step - two_pi
                #comWorldFrame = np.array([0.0, 0.0, 0.0])
                z = self.optimize_angle_variable_constraint(lp, theta, solver)
                if all([norm(z - z0) > 1e-5 for z0 in init_vertices]):
                    init_vertices.append(z)
                max_iter -= 1
            if len(init_vertices) < 3:
                raise Exception("problem is not linearly feasible")
            v0 = Vertex(init_vertices[0])
            v1 = Vertex(init_vertices[1])
            v2 = Vertex(init_vertices[2])
            polygon = Polygon()
            polygon.from_vertices(v0, v1, v2)
            polygon.iter_expand(lp, max_iter)
            return polygon
    
    def line(self, p1, p2):
        A = (p1[1] - p2[1])
        B = (p2[0] - p1[0])
        C = (p1[0]*p2[1] - p2[0]*p1[1])
        return A, B, -C
    
    def two_lines_intersection(self, L1, L2):
        D  = L1[0] * L2[1] - L1[1] * L2[0]
        Dx = L1[2] * L2[1] - L1[1] * L2[2]
        Dy = L1[0] * L2[2] - L1[2] * L2[0]
        if D != 0:
            x = Dx / D
            y = Dy / D
            return x,y
        else:
            return False
    
    
    def find_intersection(self, vertices_input, desired_direction, comWF):
        desired_direction = desired_direction/np.linalg.norm(desired_direction)
        #print "desired dir: ", desired_direction
        
        desired_com_line = self.line(comWF, comWF+desired_direction)
        #print "des line : ", desired_com_line
        tmp_vertices = np.vstack([vertices_input, vertices_input[0]])
        intersection_points = np.zeros((0,2))
        points = np.zeros((0,2))
        for i in range(0,len(vertices_input)):
            v1 = tmp_vertices[i]
            v2 = tmp_vertices[i+1]        
            actuation_region_edge = self.line(v1, v2)
            #print desired_com_line, actuation_region_edge
            new_point = self.two_lines_intersection(desired_com_line, actuation_region_edge)
            #print "new point ", new_point
            if new_point:
                intersection_points = np.vstack([intersection_points, new_point])
            else:
                print "lines are parallel!"
                while new_point is False:
                    desired_com_line = self.line(comWF, comWF+desired_direction+np.array([random()*0.01,random()*0.01,0.0]))
                    new_point = self.two_lines_intersection(desired_com_line, actuation_region_edge)
                    intersection_points = np.vstack([intersection_points, new_point])
#                    print new_point
                    
            #print intersection_points
            epsilon = 0.0001;
            if np.abs(desired_direction[0]- comWF[0]) > epsilon:
                alpha_com_x_line = (new_point[0] - comWF[0])/(desired_direction[0]- comWF[0])
            else:
                alpha_com_x_line = 1000000000.0;
                
            if np.abs(desired_direction[1]- comWF[1]) > epsilon:
                alpha_com_y_line = (new_point[1] - comWF[1])/(desired_direction[1]- comWF[1])
            else:
                alpha_com_y_line = 1000000000.0
                
            #print alpha_com_x_line, alpha_com_y_line
            
            if alpha_com_x_line > 0.0 and alpha_com_y_line >= 0.0:
                if np.abs(v2[0] - v1[0]) > epsilon:
                    alpha_vertices_x = (new_point[0] - v1[0])/(v2[0] - v1[0])
                else:
                    alpha_vertices_x = 0.5
                
                #print "alpha_vertices_x ", alpha_vertices_x
                if alpha_vertices_x >= 0.0 and alpha_vertices_x <= 1.0:
                    if np.abs(v2[1] - v1[1]) > epsilon:
                        alpha_vertices_y = (new_point[1] - v1[1])/(v2[1] - v1[1]) 
                    else:
                        alpha_vertices_y = 0.5
                    
                    #print "alpha vertx y ", alpha_vertices_y
                    if alpha_vertices_y >= 0.0 and alpha_vertices_y <= 1.0:                   
                        points = np.vstack([points, new_point])
                                
                elif np.abs(v2[1] - v1[1]):
                    alpha_vertices_y = (new_point[1] - v1[1])/(v2[1] - v1[1])            
                    if alpha_vertices_y >= 0.0 and alpha_vertices_y <= 1.0:                   
                        points = np.vstack([points, new_point])
                        
#        print points
        return points, intersection_points
    
    def find_vertex_along_path(self, params, desired_direction, tolerance = 0.05, max_iteration_number = 10):
        final_points = np.zeros((0,2))
        newCoM = params.getCoMPosWF()
        comWF = params.getCoMPosWF()
        contactsBF = params.getContactsPosBF()
        comToStack = np.zeros((0,3))
        stackedIncrements = np.zeros((0,3))
        increment = np.array([100.0, 100.0, 0.0])
        while_iter = 0
        polygon_to_stack = []
        
        while (np.amax(np.abs(increment))>tolerance) and (while_iter<max_iteration_number):
            comToStack = np.vstack([comToStack, newCoM])
            params.setCoMPosWF(newCoM)
            contactsBF_tmp = contactsBF - newCoM
            params.setContactsPosBF(contactsBF_tmp)
            polygon = self.compute_polygon_variable_constraint(params)
            
            if polygon:
                polygon.sort_vertices()
                vertices_list = polygon.export_vertices()
                vertices1 = [array([v.x, v.y]) for v in vertices_list]
                polygon_to_stack.append(vertices1)
                print while_iter
#                print 'poly',vertices1
                new_p, all_points = self.find_intersection(vertices1, desired_direction, comWF)
                if np.size(new_p, 0)==0:
                    while_iter+= max_iteration_number
                else:
                    final_points = np.vstack([final_points, new_p])
                    increment = np.hstack([new_p[0], 0.0]) - newCoM
                    stackedIncrements = np.vstack([stackedIncrements, increment])
                    newCoM = 0.2*increment + newCoM
                    while_iter += 1
            else:
                print "foot position is out of workspace!"
                while_iter += max_iteration_number
        
        print polygon_to_stack
        return comToStack, stackedIncrements, polygon_to_stack
コード例 #8
0
ファイル: communication.py プロジェクト: ytwboxing/jet-leg
def talker(robotName):
    compDyn = ComputationalDynamics(robotName)
    footHoldPlanning = FootHoldPlanning(robotName)
    math = Math()
    p = HyQSim()
    p.start()
    p.register_node()

    name = "Actuation_region"
    force_polytopes_name = "force_polytopes"

    params = IterativeProjectionParameters()
    foothold_params = FootholdPlanningInterface()
    i = 0

    p.get_sim_wbs()
    params.getParamsFromRosDebugTopic(p.hyq_debug_msg)
    foothold_params.getParamsFromRosDebugTopic(p.hyq_debug_msg)
    params.getFutureStanceFeetFlags(p.hyq_debug_msg)
    """ contact points """
    ng = 4
    params.setNumberOfFrictionConesEdges(ng)

    while not ros.is_shutdown():

        print 'CIAOOOOOOO'
        p.get_sim_wbs()

        params.getParamsFromRosDebugTopic(p.hyq_debug_msg)
        foothold_params.getParamsFromRosDebugTopic(p.hyq_debug_msg)
        #params.getFutureStanceFeet(p.hyq_debug_msg)
        params.getCurrentStanceFeetFlags(p.hyq_debug_msg)

        # USE THIS ONLY TO PLOT THE ACTUAL REGION FOR A VIDEO FOR THE PAPER DO NOT USE FOR COM PLANNING
        params.setConstraintModes([
            'FRICTION_AND_ACTUATION', 'FRICTION_AND_ACTUATION',
            'FRICTION_AND_ACTUATION', 'FRICTION_AND_ACTUATION'
        ])
        IAR, actuation_polygons_array, computation_time = compDyn.try_iterative_projection_bretl(
            params)
        # print 'feasible region', IAR
        #        if IAR is not False:
        #            p.send_actuation_polygons(name, p.fillPolygon(IAR), foothold_params.option_index, foothold_params.ack_optimization_done)
        #            old_IAR = IAR
        #        else:
        #            print 'Could not compute the feasible region'
        #            p.send_actuation_polygons(name, p.fillPolygon(old_IAR), foothold_params.option_index,
        #
        #                                      foothold_params.ack_optimization_done)
        ##
        p.send_actuation_polygons(name, p.fillPolygon(IAR),
                                  foothold_params.option_index,
                                  foothold_params.ack_optimization_done)

        constraint_mode_IP = 'ONLY_FRICTION'
        params.setConstraintModes([
            constraint_mode_IP, constraint_mode_IP, constraint_mode_IP,
            constraint_mode_IP
        ])
        params.setNumberOfFrictionConesEdges(ng)

        params.contactsWF[params.actual_swing] = foothold_params.footOptions[
            foothold_params.option_index]

        #        uncomment this if you dont want to use the vars read in iterative_proJ_params
        #        params.setContactNormals(normals)
        #        params.setFrictionCoefficient(mu)
        #        params.setTrunkMass(trunk_mass)
        #        IP_points, actuation_polygons, comp_time = comp_dyn.support_region_bretl(stanceLegs, contacts, normals, trunk_mass)

        frictionRegion, actuation_polygons, computation_time = compDyn.iterative_projection_bretl(
            params)
        p.send_support_region(name, p.fillPolygon(frictionRegion))

        #print "AA"

        #1 - INSTANTANEOUS FEASIBLE REGION
        # ONLY_ACTUATION, ONLY_FRICTION or FRICTION_AND_ACTUATION

        #IAR, actuation_polygons_array, computation_time = compDyn.iterative_projection_bretl(params)
        #print 'feasible region', IAR,
        #p.send_actuation_polygons(name, p.fillPolygon(IAR), foothold_params.option_index, foothold_params.ack_optimization_done)

        #2 - FORCE POLYGONS
        #point = Point()
        #polygonVertex = Point()
        #polygon = Polygon3D()
        #        point.x = actuation_polygons_array[0][0][0]/1000.0
        #        point.y = actuation_polygons_array[0][1][0]/1000.0
        #        point.z = actuation_polygons_array[0][2][0]/1000.0

        #        forcePolygons = []
        #        for i in range(0,4):
        #            singlePolygon = Polygon3D()
        ##            print actuation_polygons_array[i]
        #            vertices = []
        #            for j in range(0,8):
        #                vx = Point()
        #                vx.x = actuation_polygons_array[i][0][j]/1000.0
        #                vx.y = actuation_polygons_array[i][1][j]/1000.0
        #                vx.z = actuation_polygons_array[i][2][j]/1000.0
        #                vertices = np.hstack([vertices, vx])
        #            singlePolygon.vertices = vertices
        #            forcePolygons = np.hstack([forcePolygons, singlePolygon])
        #        p.send_force_polytopes(force_polytopes_name, forcePolygons)

        #4 - FOOTHOLD PLANNING

        #print 'opt started?', foothold_params.optimization_started
        #print 'ack opt done', foothold_params.ack_optimization_done
        #        foothold_params.ack_optimization_done = True
        actuationRegions = []
        #        print 'robot mass', params.robotMass
        if (foothold_params.optimization_started == False):
            foothold_params.ack_optimization_done = False
        ''' The optimization-done-flag is set by the planner. It is needed to tell the controller whether the optimization 
        is finished or not. When this flag is true the controller will read the result of the optimization that has read 
        from the planner'''
        print 'optimization done flag', foothold_params.ack_optimization_done
        ''' The optimization-started-flag is set by the controller. It is needed to tell the planner that a new optimization should start.
        When this flag is true the planner (in jetleg) will start a new computation of the feasible region.'''
        print 'optimization started flag', foothold_params.optimization_started
        if foothold_params.optimization_started and not foothold_params.ack_optimization_done:
            print '============================================================'
            print 'current swing ', params.actual_swing
            print '============================================================'

            #print foothold_params.footOptions

            #chosen_foothold, actuationRegions = footHoldPlanning.selectMaximumFeasibleArea(foothold_params, params)
            #            print 'current swing ',params.actual_swing
            foothold_params.option_index, stackedResidualRadius, actuationRegions, mapFootHoldIdxToPolygonIdx = footHoldPlanning.selectMaximumFeasibleArea(
                foothold_params, params)

            if actuationRegions is False:
                foothold_params.option_index = -1
            else:
                print 'min radius ', foothold_params.minRadius, 'residual radius ', stackedResidualRadius
                #print 'feet options', foothold_params.footOptions
                print 'final index', foothold_params.option_index, 'index list', mapFootHoldIdxToPolygonIdx

            foothold_params.ack_optimization_done = 1

            #         ONLY_ACTUATION, ONLY_FRICTION or FRICTION_AND_ACTUATION
            #        3 - FRICTION REGION
            constraint_mode_IP = 'ONLY_FRICTION'
            params.setConstraintModes([
                constraint_mode_IP, constraint_mode_IP, constraint_mode_IP,
                constraint_mode_IP
            ])
            params.setNumberOfFrictionConesEdges(ng)

            params.contactsWF[
                params.actual_swing] = foothold_params.footOptions[
                    foothold_params.option_index]

            #        uncomment this if you dont want to use the vars read in iterative_proJ_params
            #        params.setContactNormals(normals)
            #        params.setFrictionCoefficient(mu)
            #        params.setTrunkMass(trunk_mass)
            #        IP_points, actuation_polygons, comp_time = comp_dyn.support_region_bretl(stanceLegs, contacts, normals, trunk_mass)

            frictionRegion, actuation_polygons, computation_time = compDyn.iterative_projection_bretl(
                params)

            print 'friction region is: ', frictionRegion

            p.send_support_region(name, p.fillPolygon(frictionRegion))

            #this sends the data back to ros that contains the foot hold choice (used for stepping) and the corrspondent region (that will be used for com planning TODO update with the real footholds)
            if (actuationRegions is not False) and (np.size(actuationRegions)
                                                    is not 0):
                print 'sending actuation region'
                p.send_actuation_polygons(
                    name, p.fillPolygon(actuationRegions[-1]),
                    foothold_params.option_index,
                    foothold_params.ack_optimization_done)
                # print actuationRegions[-1]
            else:
                #if it cannot compute anything it will return the frictin region
                p.send_actuation_polygons(
                    name, p.fillPolygon(frictionRegion),
                    foothold_params.option_index,
                    foothold_params.ack_optimization_done)

        time.sleep(0.1)
        i += 1

    print 'de registering...'
    p.deregister_node()
コード例 #9
0
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.cm as cmx

from jet_leg.plotting.plotting_tools import Plotter
from jet_leg.maths.math_tools import Math
from jet_leg.dynamics.computational_dynamics import ComputationalDynamics
from jet_leg.map.height_map import HeightMap

from jet_leg.optimization.path_sequential_iterative_projection import PathIterativeProjection
from jet_leg.maths.iterative_projection_parameters import IterativeProjectionParameters
''' MAIN '''
start_t_IPVC = time.time()

math = Math()
compDyn = ComputationalDynamics()
pathIP = PathIterativeProjection()
# number of contacts
number_of_contacts = 4

# ONLY_ACTUATION, ONLY_FRICTION or FRICTION_AND_ACTUATION
constraint_mode = [
    'FRICTION_AND_ACTUATION', 'FRICTION_AND_ACTUATION',
    'FRICTION_AND_ACTUATION', 'FRICTION_AND_ACTUATION'
]
useVariableJacobian = True
total_mass = 100
mu = 0.8

terrain = HeightMap()
comWF = np.array([0.1, 0.1, 0.0])
コード例 #10
0
n4 = np.transpose(np.transpose(math.rpyToRot(0.0, 0.0, 0.0)).dot(axisZ))  # RH
normals = np.vstack([n1, n2, n3, n4])
''' torque limits for each leg (this code assumes a hyq-like design, i.e. three joints per leg)
HAA = Hip Abduction Adduction
HFE = Hip Flextion Extension
KFE = Knee Flextion Extension
'''
LF_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
RF_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
LH_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
RH_tau_lim = [40.0, 40.0, 40.0]  # HAA, HFE, KFE
torque_limits = np.array([LF_tau_lim, RF_tau_lim, LH_tau_lim, RH_tau_lim])
''' extForceW is an optional external pure force (no external torque for now) applied on the CoM of the robot.'''
extForceW = np.array([0.0, 0.0, 0.0])  # units are Nm

comp_dyn = ComputationalDynamics(robot_name)
'''You now need to fill the 'params' object with all the relevant 
    informations needed for the computation of the IP'''
params = IterativeProjectionParameters()

params.setContactsPosWF(contactsWF)
params.setCoMPosWF(comWF)
params.setTorqueLims(torque_limits)
params.setActiveContacts(stanceFeet)
params.setConstraintModes(constraint_mode_IP)
params.setContactNormals(normals)
params.setFrictionCoefficient(mu)
params.setNumberOfFrictionConesEdges(ng)
params.setTotalMass(trunk_mass)
params.externalForceWF = extForceW  # params.externalForceWF is actually used anywhere at the moment
''' compute iterative projection 
コード例 #11
0
class FootHoldPlanning:
    def __init__(self, robot_name):
        self.robotName = robot_name
        self.compGeo = ComputationalGeometry()
        self.compDyn = ComputationalDynamics(self.robotName)
        self.footPlanning = FootholdPlanningInterface()
        self.math = Math()
        self.dog = DogInterface()
        self.rbd = RigidBodyDynamics()
        
    def selectMaximumFeasibleArea(self, footPlanningParams, params):
   
        params.setCoMPosWF(footPlanningParams.com_position_to_validateW)
        
#        print "com pos to validate" , params.com_position_to_validateW
#        print "sample contacts" , params.sample_contacts
        
#        footPlanningParams.numberOfFeetOptions = np.size(footPlanningParams.footOptions,0)
        print 'number of feet options ',footPlanningParams.numberOfFeetOptions
#        print numberOfFeetOptions
        feasible_regions = []
        area = []
        for i in range(0, footPlanningParams.numberOfFeetOptions):
            #these two lines go together to overwrite the future swing foot
                     
            params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[i]
            IAR, actuation_polygons_array, computation_time = self.compDyn.iterative_projection_bretl(params)

#            print 'IAR', IAR
            d = self.math.find_residual_radius(IAR, footPlanningParams.com_position_to_validateW)
            print 'residual radius', d
            feasible_regions.append(IAR)
#            print 'FR', feasible_regions
            area.append( self.compGeo.computePolygonArea(IAR))
        
        print 'area ', area
        print 'max arg ',np.argmax(np.array(area), axis=0)
        return np.argmax(np.array(area), axis=0), feasible_regions
        
    def selectMinumumRequiredFeasibleAreaResidualRadius(self,  footPlanningParams, params):
        ng = 4
        params.setConstraintModes(['FRICTION_AND_ACTUATION',
                           'FRICTION_AND_ACTUATION',
                           'FRICTION_AND_ACTUATION',
                           'FRICTION_AND_ACTUATION'])
        params.setNumberOfFrictionConesEdges(ng)

        params.setCoMPosWF(footPlanningParams.com_position_to_validateW)

#        print numberOfFeetOptions
        feasible_regions = []
        residualRadiusToStack = []
#        print 'empty res radii', residualRadiusToStack
#        footOptions = []
        area = []
        mapFootHoldIdxToPolygonIdx = []
        
#        counter = 0
        print 'number of feet options ',footPlanningParams.numberOfFeetOptions
        numberOfOptions = footPlanningParams.numberOfFeetOptions
        
        #check the prediction point at the beginning
        if numberOfOptions > 0:
            foothold_index  = int((numberOfOptions -1)/2.0) #assumes numberOfOptions is odd
            #        print 'initial foothold index', foothold_index
            #these two lines go together to overwrite the future swing foot
            params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[foothold_index]
            #        print 'contacts WF', params.contactsWF
            #        print 'com pos WF', params.getCoMPosWF()
            IAR, actuation_polygons_array, computation_time = self.compDyn.try_iterative_projection_bretl(params)
            #        print 'IAR', IAR
            if IAR is False:
                return False, False, False, False 
            else:
                residualRadius = deepcopy(self.math.find_residual_radius(IAR, footPlanningParams.com_position_to_validateW))
                area.append( self.compGeo.computePolygonArea(IAR))
                mapFootHoldIdxToPolygonIdx.append(foothold_index)
                #            footOptions.append(deepcopy(params.contactsWF[params.actual_swing] ))
                feasible_regions.append(IAR)
                residualRadiusToStack.append(residualRadius)
                if residualRadius < footPlanningParams.minRadius:
                    gradient, searchDirection, residualRadius, foothold_index, residualRadiusToStack, feasible_regions, mapFootHoldIdxToPolygonIdx = self.compute_search_direciton(params, footPlanningParams, residualRadius, foothold_index, area,
                                             feasible_regions, mapFootHoldIdxToPolygonIdx, residualRadiusToStack)
                else:
                    gradient = False
                            
                if gradient is not False:
                   # print 'gradient before while', gradient
                    foothold_index += searchDirection
                    params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[foothold_index] 
                
            #            print 'number of option',numberOfOptions  
                #move along the grid to find the feasible point 
                    while ((gradient > 0.0) and (residualRadius < footPlanningParams.minRadius) and (foothold_index > 0) and (foothold_index < numberOfOptions-1)):
                        
                        #these two lines go together to overwrite the future swing foot
                        params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[foothold_index+searchDirection]  
                        IAR, actuation_polygons_array, computation_time = self.compDyn.try_iterative_projection_bretl(params)
                        if IAR is False:
                            residualRadius = 0.0
                            newArea = 0.0
                        else:
                            residualRadius = self.math.find_residual_radius(IAR, footPlanningParams.com_position_to_validateW)
                            newArea = self.compGeo.computePolygonArea(IAR)
                        oldArea = area[-1]
                        oldResidualRadius = residualRadiusToStack[-1]
                        #                   print 'old residual radius', oldResidualRadius
                        #                   gradient = residualRadius - oldResidualRadius
                        gradient = newArea - oldArea
                        #                   print 'area gradient ', gradient
                        #                   gradient = (residualRadius - newResidualRadius)/gridResolution
                        if gradient > 0:                
                            foothold_index += searchDirection
                            mapFootHoldIdxToPolygonIdx.append(foothold_index)
                            feasible_regions.append(IAR)
                            residualRadiusToStack.append(residualRadius)
                            area.append(newArea)
            print 'area ', area
            
        else:
            foothold_index = -1
#            feasible_regions = false
                    
                
#        print 'res radii', residualRadiusToStack
    
#            print 'foothold index ', foothold_index
#            footPlanningParams.option_index = foothold_index
        return foothold_index, residualRadiusToStack, feasible_regions, mapFootHoldIdxToPolygonIdx

    def compute_search_direciton(self, params, footPlanningParams, residualRadius, foothold_index, area, feasible_regions, mapFootHoldIdxToPolygonIdx, residualRadiusToStack):
        # check the fist point after and before the heuristic one along the direction
        # these two lines go together to overwrite the future swing foot
        if foothold_index < footPlanningParams.numberOfFeetOptions:
            params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[foothold_index + 1]
            #print "residualRadius, params.actual_swing, foothold_index, params.contactsWF", residualRadius, params.actual_swing, foothold_index, params.contactsWF
            IAR1, actuation_polygons_array, computation_time = self.compDyn.try_iterative_projection_bretl(params)
            newResidualRadius1 = deepcopy(
                self.math.find_residual_radius(IAR1, footPlanningParams.com_position_to_validateW))
            searchDirection1 = +1
            area.append(self.compGeo.computePolygonArea(IAR1))
            #            footOptions.append(deepcopy(params.contactsWF[params.actual_swing]))
            feasible_regions.append(IAR1)
            mapFootHoldIdxToPolygonIdx.append(foothold_index + 1)
            residualRadiusToStack.append(newResidualRadius1)
        else:
            newResidualRadius1 = 0.0
            
        # these two lines go together to overwrite the future swing foot
        params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[foothold_index - 1]
        IAR2, actuation_polygons_array, computation_time = self.compDyn.try_iterative_projection_bretl(params)
        if IAR2 is not False:
            if foothold_index > 0:
                newResidualRadius2 = deepcopy(
                    self.math.find_residual_radius(IAR2, footPlanningParams.com_position_to_validateW))
                searchDirection2 = -1

                area.append(self.compGeo.computePolygonArea(IAR2))
                mapFootHoldIdxToPolygonIdx.append(foothold_index - 1)
                #                footOptions.append(deepcopy(params.contactsWF[params.actual_swing]))
                feasible_regions.append(IAR2)
                residualRadiusToStack.append(newResidualRadius2)
            else:
                newResidualRadius2 = 0.0
        else:
            newResidualRadius2 = 0.0
        #            print 'RADS', residualRadius, newResidualRadius1, newResidualRadius2
        if (newResidualRadius1 > (residualRadius + footPlanningParams.TOL)) and (
                newResidualRadius1 > (newResidualRadius2 + footPlanningParams.TOL)):
            searchDirection = searchDirection1
            gradient = newResidualRadius1 - residualRadius
            residualRadius = newResidualRadius1

        elif (newResidualRadius2 > (residualRadius + footPlanningParams.TOL)) and (
                newResidualRadius2 > (newResidualRadius1 + footPlanningParams.TOL)):
            searchDirection = searchDirection2
            gradient = newResidualRadius2 - residualRadius
            residualRadius = newResidualRadius2
        else:  # you are already in the max
            searchDirection = 0
            #                    print 'final foothold index', foothold_index
            print 'RETURN before entering while loop'
            gradient = False
            return gradient, searchDirection, residualRadius, foothold_index, residualRadiusToStack, feasible_regions, mapFootHoldIdxToPolygonIdx

        return gradient, searchDirection, residualRadius, foothold_index, residualRadiusToStack, feasible_regions, mapFootHoldIdxToPolygonIdx

    def selectMaximumFeasibleArea(self, footPlanningParams, params):
        ng = 4
        params.setConstraintModes(['FRICTION_AND_ACTUATION',
                                   'FRICTION_AND_ACTUATION',
                                   'FRICTION_AND_ACTUATION',
                                   'FRICTION_AND_ACTUATION'])
        
        params.setNumberOfFrictionConesEdges(ng)

        params.setCoMPosWF(footPlanningParams.com_position_to_validateW)

        #        print numberOfFeetOptions
        feasible_regions = []
        residualRadiusToStack = []
        #        print 'empty res radii', residualRadiusToStack
        #        footOptions = []
        area = []
        mapFootHoldIdxToPolygonIdx = []

        #        counter = 0
        print 'number of feet options ', footPlanningParams.numberOfFeetOptions
        numberOfOptions = footPlanningParams.numberOfFeetOptions
        print footPlanningParams.footOptions

        # check the prediction point at the beginning
        if numberOfOptions > 0:
            for footIndex in range(0, int(numberOfOptions)):
                # these two lines go together to overwrite the future swing foot
                params.contactsWF[params.actual_swing] = footPlanningParams.footOptions[footIndex]
                IAR, actuation_polygons_array, computation_time = self.compDyn.try_iterative_projection_bretl(params)
                if IAR is False:
                    residualRadius = 0.0
                    newArea = 0.0
                else:
                    residualRadius = self.math.find_residual_radius(IAR,
                                                                    footPlanningParams.com_position_to_validateW)
                    newArea = self.compGeo.computePolygonArea(IAR)

                    mapFootHoldIdxToPolygonIdx.append(footIndex)
                    feasible_regions.append(IAR)
                    residualRadiusToStack.append(residualRadius)
                    area.append(newArea)
            print 'area ', area
            if np.size(area, 0) > 0:
                maxFootIndex = np.argmax(area)
            else:
                maxFootIndex = -1
            print 'max foothold: ', maxFootIndex

        else:
            maxFootIndex = -1
        #            feasible_regions = false

        #        print 'res radii', residualRadiusToStack

        #            print 'foothold index ', foothold_index
        #            footPlanningParams.option_index = foothold_index
        return maxFootIndex, residualRadiusToStack, feasible_regions, mapFootHoldIdxToPolygonIdx