コード例 #1
0
def setup_jiant_model(
    hf_pretrained_model_name_or_path: str,
    model_config_path: str,
    task_dict: Dict[str, Task],
    taskmodels_config: container_setup.TaskmodelsConfig,
):
    """Sets up tokenizer, encoder, and task models, and instantiates and returns a JiantModel.

    Args:
        hf_pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
            Can be either:

                - A string, the `model id` of a predefined tokenizer hosted inside a model
                  repo on huggingface.co. Valid model ids can be located at the root-level,
                  like ``bert-base-uncased``, or namespaced under
                  a user or organization name, like ``dbmdz/bert-base-german-cased``.
                - A path to a `directory` containing vocabulary files required by the
                  tokenizer, for instance saved using the
                  :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.,
                  ``./my_model_directory/``.
                - A path or url to a single saved vocabulary file if and only if
                  the tokenizer only requires a single vocabulary file (like Bert or XLNet),
                  e.g.: ``./my_model_directory/vocab.txt``. (Not
                  applicable to all derived classes)
        model_config_path (str): Path to the JSON file containing the configuration parameters.
        task_dict (Dict[str, tasks.Task]): map from task name to task instance.
        taskmodels_config: maps mapping from tasks to models, and specifying task-model configs.

    Returns:
        JiantModel nn.Module.

    """
    if hf_pretrained_model_name_or_path == "roberta-base":
        encoder = mixer_l16_224()  #mixer_s16_224()
    # hf_model = transformers.AutoModel.from_pretrained(hf_pretrained_model_name_or_path)
    # print("hf_model: ", hf_model)
    # exit(0)
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        hf_pretrained_model_name_or_path, use_fast=False
    )
    print("tokenizer", tokenizer)
    # exit(0)
    # encoder = primary.JiantTransformersModelFactory()(hf_model)
    taskmodels_dict = {
        taskmodel_name: create_taskmodel(
            task=task_dict[task_name_list[0]],  # Take the first task
            encoder=encoder,
            taskmodel_kwargs=taskmodels_config.get_taskmodel_kwargs(taskmodel_name),
        )
        for taskmodel_name, task_name_list in get_taskmodel_and_task_names(
            taskmodels_config.task_to_taskmodel_map
        ).items()
    }
    return primary.JiantModel(
        task_dict=task_dict,
        encoder=encoder,
        taskmodels_dict=taskmodels_dict,
        task_to_taskmodel_map=taskmodels_config.task_to_taskmodel_map,
        tokenizer=tokenizer,
    )
コード例 #2
0
def setup_jiant_model(
    model_type: str,
    model_config_path: str,
    tokenizer_path: str,
    task_dict: Dict[str, Task],
    taskmodels_config: container_setup.TaskmodelsConfig,
):
    """Sets up tokenizer, encoder, and task models, and instantiates and returns a JiantModel.

    Args:
        model_type (str): model shortcut name.
        model_config_path (str): Path to the JSON file containing the configuration parameters.
        tokenizer_path (str): path to tokenizer directory.
        task_dict (Dict[str, tasks.Task]): map from task name to task instance.
        taskmodels_config: maps mapping from tasks to models, and specifying task-model configs.

    Returns:
        JiantModel nn.Module.

    """
    model_arch = ModelArchitectures.from_model_type(model_type)
    transformers_class_spec = TRANSFORMERS_CLASS_SPEC_DICT[model_arch]
    tokenizer = model_setup.get_tokenizer(model_type=model_type,
                                          tokenizer_path=tokenizer_path)
    ancestor_model = get_ancestor_model(
        transformers_class_spec=transformers_class_spec,
        model_config_path=model_config_path,
    )
    encoder = get_encoder(model_arch=model_arch, ancestor_model=ancestor_model)
    taskmodels_dict = {
        taskmodel_name: create_taskmodel(
            task=task_dict[task_name_list[0]],  # Take the first task
            model_arch=model_arch,
            encoder=encoder,
            taskmodel_kwargs=taskmodels_config.get_taskmodel_kwargs(
                taskmodel_name),
        )
        for taskmodel_name, task_name_list in get_taskmodel_and_task_names(
            taskmodels_config.task_to_taskmodel_map).items()
    }
    return primary.JiantModel(
        task_dict=task_dict,
        encoder=encoder,
        taskmodels_dict=taskmodels_dict,
        task_to_taskmodel_map=taskmodels_config.task_to_taskmodel_map,
        tokenizer=tokenizer,
    )
コード例 #3
0
ファイル: model_setup.py プロジェクト: neginraoof/jiant
def setup_jiant_model(
    hf_pretrained_model_name_or_path: str,
    model_config_path: str,
    task_dict: Dict[str, Task],
    taskmodels_config: container_setup.TaskmodelsConfig,
):
    """Sets up tokenizer, encoder, and task models, and instantiates and returns a JiantModel.

    Args:
        hf_pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
            Can be either:

                - A string, the `model id` of a predefined tokenizer hosted inside a model
                  repo on huggingface.co. Valid model ids can be located at the root-level,
                  like ``bert-base-uncased``, or namespaced under
                  a user or organization name, like ``dbmdz/bert-base-german-cased``.
                - A path to a `directory` containing vocabulary files required by the
                  tokenizer, for instance saved using the
                  :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.,
                  ``./my_model_directory/``.
                - A path or url to a single saved vocabulary file if and only if
                  the tokenizer only requires a single vocabulary file (like Bert or XLNet),
                  e.g.: ``./my_model_directory/vocab.txt``. (Not
                  applicable to all derived classes)
        model_config_path (str): Path to the JSON file containing the configuration parameters.
        task_dict (Dict[str, tasks.Task]): map from task name to task instance.
        taskmodels_config: maps mapping from tasks to models, and specifying task-model configs.

    Returns:
        JiantModel nn.Module.

    """
    model = transformers.AutoModel.from_pretrained(
        hf_pretrained_model_name_or_path)
    model_arch = ModelArchitectures.from_model_type(model.base_model_prefix)
    transformers_class_spec = TRANSFORMERS_CLASS_SPEC_DICT[model_arch]
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        hf_pretrained_model_name_or_path)
    if (os.path.isdir(hf_pretrained_model_name_or_path)):
        model_config_path = hf_pretrained_model_name_or_path + "/config.json"

    ancestor_model = get_ancestor_model(
        transformers_class_spec=transformers_class_spec,
        model_config_path=model_config_path,
    )
    encoder = get_encoder(model_arch=model_arch, ancestor_model=ancestor_model)
    taskmodels_dict = {
        taskmodel_name: create_taskmodel(
            task=task_dict[task_name_list[0]],  # Take the first task
            model_arch=model_arch,
            encoder=encoder,
            taskmodel_kwargs=taskmodels_config.get_taskmodel_kwargs(
                taskmodel_name),
        )
        for taskmodel_name, task_name_list in get_taskmodel_and_task_names(
            taskmodels_config.task_to_taskmodel_map).items()
    }
    return primary.JiantModel(
        task_dict=task_dict,
        encoder=encoder,
        taskmodels_dict=taskmodels_dict,
        task_to_taskmodel_map=taskmodels_config.task_to_taskmodel_map,
        tokenizer=tokenizer,
    )