コード例 #1
0
def write_cell_views(fpath_prefix, wall_projection, marker_projection, region,
                     celldata):
    wall_ann = AnnotatedImage.from_grayscale(wall_projection, (1, 0, 0))
    marker_ann = AnnotatedImage.from_grayscale(marker_projection, (0, 1, 0))
    ann = wall_ann + marker_ann
    color = (200, 200, 200)
    ann.mask_region(region.border, color)
    ann.draw_cross(region.centroid, color)
    dilated_region = region.dilate(20)
    wall_ann[np.logical_not(dilated_region)] = (0, 0, 0)
    marker_ann[np.logical_not(dilated_region)] = (0, 0, 0)
    ann[np.logical_not(dilated_region)] = (0, 0, 0)

    # If rotation is not 0, 90, 180, 270 the image becomes larger than then input
    # and the scaling gets messed up. The scaling may not matter since downstream
    # processing will use unit vectors around the center of the cell (the centroid)
    # but for now I want to create annotations where the user clicks are reflected
    # in the ouput.
    #   rotation = random.randrange(0, 360)
    rotation = random.choice([0, 90, 180, 270])

    celldata["rotation"] = rotation
    for suffix, annotation in [("-wall", wall_ann), ("-marker", marker_ann),
                               ("-combined", ann)]:
        fpath = fpath_prefix + suffix + ".png"
        annotation = post_process_annotation(annotation, dilated_region,
                                             celldata, rotation)

        scipy.misc.imsave(fpath, annotation)
コード例 #2
0
def save_annotated_leaf(input_dir, input_image, output_file, random, **kwargs):
    """Write out annotated leaf image."""
    microscopy_collection = get_microscopy_collection(input_image)

    wall_stack = microscopy_collection.zstack(c=kwargs["wall_channel"])
    surface = surface_from_stack(wall_stack, **kwargs)
    wall_projection = project_wall(wall_stack, surface, **kwargs)

    marker_stack = microscopy_collection.zstack(c=kwargs["marker_channel"])
    # Refactor with analysis script to ensure always in sync.
    marker_projection = project_marker(marker_stack, surface, **kwargs)

    wall_ann = AnnotatedImage.from_grayscale(wall_projection, (1, 0, 0))
    marker_ann = AnnotatedImage.from_grayscale(marker_projection, (0, 1, 0))
    ann = wall_ann + marker_ann

    json_fpaths = [
        os.path.join(input_dir, f) for f in os.listdir(input_dir)
        if f.endswith(".json")
    ]

    y_key = "normalised_marker_y_coord"
    x_key = "normalised_marker_x_coord"
    for fpath in json_fpaths:
        with open(fpath) as fh:
            celldata = json.load(fh)

        if y_key not in celldata:
            continue
        if x_key not in celldata:
            continue
        print(fpath)
        frac_pt = celldata[y_key], celldata[x_key]
        rel_pt = tuple([i - 0.5 for i in frac_pt])

        rotation = celldata["rotation"]
        if random:
            rotation = 0
        marker_pt = original_image_point(rel_point=rel_pt,
                                         rotation=rotation,
                                         ydim=celldata["ydim"],
                                         xdim=celldata["xdim"],
                                         dy_offset=celldata["dy_offset"],
                                         dx_offset=celldata["dx_offset"])

        ann.draw_line(marker_pt, celldata["centroid"], (255, 255, 255))
        ann.draw_cross(celldata["centroid"], (255, 255, 255))

    with open(output_file, "wb") as fh:
        fh.write(ann.png())
コード例 #3
0
def generate_annotated_image(collection, cell_level_threshold):

    zstack = collection.zstack_array(s=0, c=2)
    probe_stack = collection.zstack_array(s=0, c=0)

    max_intensity_projection(probe_stack)

    seeds = find_seeds(zstack)

    #probe_stack2 = collection.zstack_array(s=0, c=1) #RI edit 2
    zstack = zstack + probe_stack  #+ probe_stack2#RI edit 3

    segmentation = segment_from_seeds(zstack, seeds, cell_level_threshold)

    projection = max_intensity_projection(zstack)
    projection_as_uint8 = uint8ify(projection)
    annotated_projection = AnnotatedImage.from_grayscale(projection_as_uint8)

    rids = np.unique(segmentation)

    for rid in rids[1:]:
        x, y, z = map(np.mean, np.where(segmentation == rid))
        size = len(np.where(segmentation == rid)[0])

        annotated_projection.text_at(str(size), y - 10, x)

    annotation_filename = 'annotated_image.png'
    with open(annotation_filename, 'wb') as f:
        f.write(annotated_projection.png())
コード例 #4
0
def post_process_annotation(ann, dilated_region, celldata, rotation):

    # Crop box around region.
    yis, xis = dilated_region.index_arrays
    ymin, ymax = np.min(yis), np.max(yis)
    xmin, xmax = np.min(xis), np.max(xis)
    ann = ann[ymin:ymax, xmin:xmax]
    celldata["dy_offset"] = ymin
    celldata["dx_offset"] = xmin

    # Pad cropped box.
    ydim, xdim, zdim = ann.shape
    p = 25
    pydim = ydim + p + p
    pxdim = xdim + p + p
    padded = AnnotatedImage.blank_canvas(width=pxdim, height=pydim)
    padded[p:ydim + p, p:xdim + p] = ann
    ann = padded
    celldata["dy_offset"] -= p
    celldata["dx_offset"] -= p
    celldata["ydim"] = pydim
    celldata["xdim"] = pxdim

    # Enlarge padded cropped box.
    ann = scipy.misc.imresize(ann, 3.0, "nearest").view(AnnotatedImage)

    # Rotate the enlarged padded cropped box.
    ann = scipy.ndimage.rotate(ann, rotation, order=0).view(AnnotatedImage)

    return ann
コード例 #5
0
def analyse_image(image):
    image = normalise(image) * 255

    canvas = AnnotatedImage.from_grayscale(image)

    image = smooth_gaussian(image.astype(float), 5)
    image = threshold_abs(image, 30)

    image = erode_binary(image)
    image = remove_small_objects(image, 5)

    salem = skimage.morphology.disk(2)
    image = dilate_binary(image, salem)

    segmentation = connected_components(image, background=0)
    for i in segmentation.identifiers:
        color = pretty_color_from_identifier(i)

        region = segmentation.region_by_identifier(i)
        convex_hull = region.convex_hull
        outline = convex_hull.inner.border.dilate()

        canvas.mask_region(outline, color=color)

    return canvas
def annotate_with_set_of_points(image, points):

    grayscale = np.mean(image, axis=2)

    annotated = AnnotatedImage.from_grayscale(grayscale)
    xdim, ydim, _ = annotated.shape

    def annotate_location(fractional_coords):

        xfrac, yfrac = fractional_coords

        ypos = int(ydim * xfrac)
        xpos = int(xdim * yfrac)
        for x in range(-2, 3):
            for y in range(-2, 3):
                annotated.draw_cross(
                    (xpos+x, ypos+y),
                    color=(255, 0, 0),
                    radius=50
                )

    for loc in points:
        annotate_location(loc)

    return annotated
コード例 #7
0
def annotate_single_identifier(dataset, identifier, output_path):
    file_path = dataset.abspath_from_identifier(identifier)

    image = Image.from_file(file_path)
    grayscale = np.mean(image, axis=2)

    annotated = AnnotatedImage.from_grayscale(grayscale)
    xdim, ydim, _ = annotated.shape

    def annotate_location(fractional_coords):

        xfrac, yfrac = fractional_coords

        ypos = int(ydim * xfrac)
        xpos = int(xdim * yfrac)
        for x in range(-2, 3):
            for y in range(-2, 3):
                annotated.draw_cross(
                    (xpos+x, ypos+y),
                    color=(255, 0, 0),
                    radius=50
                )

    for loc in find_approx_plot_locs(dataset, identifier):
        annotate_location(loc)

    output_basename = os.path.basename(file_path)
    full_output_path = os.path.join(output_path, output_basename)
    with open(full_output_path, 'wb') as f:
        f.write(annotated.png())
コード例 #8
0
def quantify_yeast_growth(input_filename, annotation_filename, 
                            profile_filename):
    

    downscaled = load_and_downscale(input_filename)
    annotation = AnnotatedImage.from_grayscale(downscaled)

    circle = fit_central_circle(downscaled)

    circle_coords = circle_perimeter(*circle)
    annotation[circle_coords] = 0, 255, 0

    x, y, r = circle
    center = (x, y)

    xdim, ydim, = downscaled.shape
    line_length = ydim - y

    mean_profile_line = find_mean_profile_line(downscaled, annotation,
                                center, -math.pi/4, math.pi/4, line_length)


    record_line_profile(profile_filename, mean_profile_line)

    with open(annotation_filename, 'wb') as f:
        f.write(annotation.png())
コード例 #9
0
def annotate_tensors(ydim, xdim, tensor_manager, fh):
    """Write out tensor image."""
    ann = AnnotatedImage.blank_canvas(width=xdim, height=ydim)
    for i in tensor_manager.identifiers:
        tensor = tensor_manager[i]
        color = pretty_color_from_identifier(tensor.cell_id)
        ann.draw_line(tensor.centroid, tensor.marker, color)
    fh.write(ann.png())
コード例 #10
0
def annotate(input_file, output_dir):
    """Write an annotated image to disk."""
    logger.info("---")
    logger.info('Input image: "{}"'.format(os.path.abspath(input_file)))
    image = Image.from_file(input_file)
    intensity = mean_intensity_projection(image)
    norm_intensity = normalise(intensity)
    norm_rgb = np.dstack([norm_intensity, norm_intensity, norm_intensity])

    name = fpath2name(input_file)
    png_name = name + ".png"
    csv_name = name + ".csv"
    png_path = os.path.join(output_dir, png_name)
    csv_path = os.path.join(output_dir, csv_name)

    tubes = find_tubes(input_file, output_dir)
    grains, difficult = find_grains(input_file, output_dir)
    tubes = remove_tubes_not_touching_grains(tubes, grains)
    tubes = remove_tubes_that_are_grains(tubes, grains)

    ann = AnnotatedImage.from_grayscale(intensity)

    num_grains = 0
    for n, i in enumerate(grains.identifiers):
        n = n + 1
        region = grains.region_by_identifier(i)
        ann.mask_region(region.inner.inner.inner.border.dilate(),
                        color=(0, 255, 0))
        num_grains = n

    num_tubes = 0
    for n, i in enumerate(tubes.identifiers):
        n = n + 1
        region = tubes.region_by_identifier(i)
        highlight = norm_rgb * pretty_color(i)
        ann[region] = highlight[region]
        ann.mask_region(region.dilate(3).border.dilate(3),
                        color=pretty_color(i))
        num_tubes = n

    ann.text_at("Num grains: {:3d}".format(num_grains), (10, 10),
                antialias=True, color=(0, 255, 0), size=48)
    logger.info("Num grains: {:3d}".format(num_grains))

    ann.text_at("Num tubes : {:3d}".format(num_tubes), (60, 10),
                antialias=True, color=(255, 0, 255), size=48)
    logger.info("Num tubes : {:3d}".format(num_tubes))

    logger.info('Output image: "{}"'.format(os.path.abspath(png_path)))
    with open(png_path, "wb") as fh:
        fh.write(ann.png())

    logger.info('Output csv: "{}"'.format(os.path.abspath(csv_path)))
    with open(csv_path, "w") as fh:
        fh.write("{},{},{}\n".format(png_name, num_grains, num_tubes))

    return png_name, num_grains, num_tubes
コード例 #11
0
def annotate(image, segmentation):
    """Return annotated image."""
    uint8_normalised = normalise(image) * 255
    annotation = AnnotatedImage.from_grayscale(uint8_normalised)
    for i in segmentation.identifiers:
        region = segmentation.region_by_identifier(i)
        annotation.mask_region(region.dilate(1).border,
                               color=pretty_color(i))
    return annotation
コード例 #12
0
def annotate_markers(markers, cells, fh):
    """Write out marker image."""
    ydim, xdim = markers.shape
    ann = AnnotatedImage.blank_canvas(width=xdim, height=ydim)
    for i in markers.identifiers:
        m_region = markers.region_by_identifier(i)
        cell_id = marker_cell_identifier(m_region, cells)
        color = pretty_color_from_identifier(cell_id)
        ann.mask_region(m_region, color)
    fh.write(ann.png())
コード例 #13
0
    def test_from_grayscale(self):
        from jicbioimage.illustrate import AnnotatedImage as AnnIm
        grayscale = np.array([
            [0, 10, 20],
            [30, 40, 50],
            [60, 70, 80]], dtype=np.uint8)
        zeros = np.zeros((3, 3), dtype=np.uint8)

        gray_expected = np.dstack([grayscale, grayscale, grayscale])
        red_expected = np.dstack([grayscale, zeros, zeros])
        cyan_expected = np.dstack([zeros, grayscale, grayscale])

        gray_canvas = AnnIm.from_grayscale(grayscale)
        self.assertTrue(np.array_equal(gray_canvas, gray_expected))

        red_canvas = AnnIm.from_grayscale(grayscale, (True, False, False))
        self.assertTrue(np.array_equal(red_canvas, red_expected))

        cyan_canvas = AnnIm.from_grayscale(grayscale, (False, True, True))
        self.assertTrue(np.array_equal(cyan_canvas, cyan_expected))
コード例 #14
0
def annotate(input_file, output_dir):
    """Write an annotated image to disk."""
    logger.info("---")
    logger.info('Input image: "{}"'.format(os.path.abspath(input_file)))
    image = Image.from_file(input_file)
    intensity = mean_intensity_projection(image)

    name = fpath2name(input_file)
    png_name = name + ".png"
    csv_name = name + ".csv"
    png_path = os.path.join(output_dir, png_name)
    csv_path = os.path.join(output_dir, csv_name)

    grains = find_grains(input_file, output_dir)

    ann = AnnotatedImage.from_grayscale(intensity)

    # Determine the median grain size based on the segmented regions.
    areas = []
    for i in grains.identifiers:
        region = grains.region_by_identifier(i)
        areas.append(region.area)
    median_grain_size = np.median(areas)

    num_grains = 0
    for i in grains.identifiers:
        region = grains.region_by_identifier(i)
        color = pretty_color(i)
        num_grains_in_area = region.area / median_grain_size
        num_grains_in_area = int(round(num_grains_in_area))
        if num_grains_in_area == 0:
            continue

        outer_line = region.dilate().border
        outline = region.border.dilate() * np.logical_not(outer_line)
        ann.mask_region(outline, color=color)
        ann.text_at(str(num_grains_in_area), region.centroid,
                    color=(255, 255, 255))
        num_grains = num_grains + num_grains_in_area

    ann.text_at("Num grains: {:3d}".format(num_grains), (10, 10),
                antialias=True, color=(0, 255, 0), size=48)
    logger.info("Num grains: {:3d}".format(num_grains))

    logger.info('Output image: "{}"'.format(os.path.abspath(png_path)))
    with open(png_path, "wb") as fh:
        fh.write(ann.png())

    logger.info('Output csv: "{}"'.format(os.path.abspath(csv_path)))
    with open(csv_path, "w") as fh:
        fh.write("{},{}\n".format(png_name, num_grains))

    return png_name, num_grains
コード例 #15
0
def generate_label_image(segmentation):

    base_for_ann = 100 * (segmentation > 0)
    ann = AnnotatedImage.from_grayscale(base_for_ann)

    for sid in segmentation.identifiers:
        c = segmentation.region_by_identifier(sid).centroid
        ann.text_at(str(sid),
                    map(int, c),
                    size=30,
                    color=(255, 255, 0),
                    center=True)

    return ann
コード例 #16
0
def annotate_segmentation(image, segmentation):

    grayscale = normalise(image) * 255
    canvas = AnnotatedImage.from_grayscale(grayscale)

    for i in segmentation.identifiers:
        region = segmentation.region_by_identifier(i)
        outline = region.inner.border.dilate()
        color = pretty_color_from_identifier(i)
        canvas.mask_region(outline, color=color)

    fpath = os.path.join(AutoName.directory, "segmentation.png")
    with open(fpath, "wb") as fh:
        fh.write(canvas.png())
コード例 #17
0
def annotate_segmentation(image, segmentation):
    """Return annotated segmentation."""
    annotation = AnnotatedImage.from_grayscale(image)
    for i in segmentation.identifiers:
        region = segmentation.region_by_identifier(i)
        color = pretty_color()
        annotation.mask_region(region.border.dilate(), color)

    props = skimage.measure.regionprops(segmentation)

    for p in props:

        try:
            minr, minc, maxr, maxc = p.bbox
            cval = int(p.centroid[1])
            line = skimage.draw.line(minr, cval, maxr, cval)
            annotation.mask_region(line, (0, 255, 0))
        except IndexError:
            # Don't draw line if it falls outside of the image.
            pass

    return annotation
def label_plots(dataset):

    identifier = "384b5421bc782259b218eaab39171d51462202fd"

    segmentation_file = "/output/DJI_0118-segmented.JPG"

    segmentation = load_segmentation_from_rgb_image(segmentation_file)

    approx_plot_locs = find_approx_plot_locs(dataset, identifier)

    xdim, ydim = segmentation.shape

    def image_coords_to_rel_coords(image, point):
        ydim, xdim = image.shape
        y_abs, x_abs = point

        x_rel = float(x_abs) / xdim
        y_rel = float(y_abs) / ydim

        return Point2D(x_rel, y_rel)

    centroids = []
    for sid in segmentation.identifiers:
        c = segmentation.region_by_identifier(sid).centroid
        centroids.append(image_coords_to_rel_coords(segmentation, c))

    loc_labels = {l: str(n) for n, l in enumerate(approx_plot_locs)}

    image = Image.from_file(dataset.abspath_from_identifier(identifier))

    annotated = annotate_with_set_of_points(image, centroids)

    def rel_coords_to_image_coords(image, point):
        ydim, xdim = image.shape
        x_rel, y_rel = point

        return Point2D(int(y_rel * ydim), int(x_rel * xdim))

    for l in approx_plot_locs:
        annotated.text_at(
            loc_labels[l],
            rel_coords_to_image_coords(segmentation, l),
            size=60,
            color=(0, 255, 0))

    def closest_loc_label(p):
        dists = [(p.distance(l), l) for l in approx_plot_locs]

        dists.sort()

        return loc_labels[dists[0][1]]

    for c in centroids:
        label = closest_loc_label(c)
        annotated.text_at(
            label,
            rel_coords_to_image_coords(segmentation, c) + Point2D(20, 20),
            size=60,
            color=(0, 255, 255))

    with open('/output/ann.png', 'wb') as f:
        f.write(annotated.png())

    grayscale = np.mean(image, axis=2)
    annotated2 = AnnotatedImage.from_grayscale(grayscale)
    for sid in segmentation.identifiers:
        region = segmentation.region_by_identifier(sid)
        annotated2.mask_region(region.border.dilate(), [255, 255, 0])

    def closest_loc_label(p):
        dists = [(p.distance(l), l) for l in approx_plot_locs]

        dists.sort()

        return loc_labels[dists[0][1]]

    for c in centroids:
        label = closest_loc_label(c)
        annotated2.text_at(
            label,
            rel_coords_to_image_coords(segmentation, c) - Point2D(30, 30),
            size=60,
            color=(0, 255, 255))

    with open('/output/ann_plots.png', 'wb') as f:
        f.write(annotated2.png())