コード例 #1
0
ファイル: _python_core.py プロジェクト: neurophysik/jitcsde
    def __init__(
            self,
            f,
            g,
            y,
            t=0.0,
            f_helpers=(),
            g_helpers=(),
            control_pars=(),
            seed=None,
            additive=False,
            do_cse=False,
    ):
        self.state = y
        self.n = len(self.state)
        self.t = t
        self.parameters = []
        self.noises = []
        self.noise_index = None
        self.new_y = None
        self.new_t = None
        self.RNG = np.random.RandomState(seed)
        self.additive = additive

        from jitcsde import t, y
        f_subs = list(reversed(f_helpers))
        g_subs = list(reversed(g_helpers))
        lambda_args = [t]
        for i in range(self.n):
            symbol = symengine.Symbol("dummy_argument_%i" % i)
            lambda_args.append(symbol)
            f_subs.append((y(i), symbol))
            g_subs.append((y(i), symbol))
        lambda_args.extend(control_pars)

        f_wc = list(
            ordered_subs(entry, f_subs).simplify(ratio=1) for entry in f())
        g_wc = list(
            ordered_subs(entry, g_subs).simplify(ratio=1) for entry in g())

        lambdify = symengine.LambdifyCSE if do_cse else symengine.Lambdify

        core_f = lambdify(lambda_args, f_wc)
        self.f = lambda t, Y: core_f(np.hstack([t, Y, self.parameters]))

        if self.additive:
            core_g = lambdify([t] + list(control_pars), g_wc)
            self.g = lambda t: core_g(np.hstack([t, self.parameters]))
        else:
            core_g = lambdify(lambda_args, g_wc)
            self.g = lambda t, Y: core_g(np.hstack([t, Y, self.parameters]))
コード例 #2
0
ファイル: _jitcode.py プロジェクト: neurophysik/jitcode
	def generate_f_lambda(self, simplify=None, do_cse=False):
		"""
		translates the symbolic derivative to a function using SymEngines `Lambdify` or `LambdifyCSE`.
		
		Parameters
		----------
		simplify : boolean
			Whether the derivative should be `simplified <http://docs.sympy.org/dev/modules/simplify/simplify.html>`_ (with `ratio=1.0`) before translating to C code. The main reason why you could want to enable this is if you expect your derivative not to be optimised and not be so large that simplifying takes a considerable amount of time. If `None`, this will be automatically disabled for `n>10`.
		
		do_cse : boolean
			Whether a common-subexpression detection, namely `LambdifyCSE`, should be used.
		"""
		
		self._prepare_lambdas()
		
		# working copy
		f_sym_wc = (ordered_subs(entry,self._lambda_subs) for entry in self.f_sym())
		
		if simplify is None:
			simplify = self.n<=10
		if simplify:
			f_sym_wc = (entry.simplify(ratio=1.0) for entry in f_sym_wc)
		
		lambdify = symengine.LambdifyCSE if do_cse else symengine.Lambdify
		core_f = lambdify(self._lambda_args,list(f_sym_wc))
		# self.f = lambda t,Y,*c_pars: core_f(np.hstack([t,Y,c_pars]))
		self.f = _lambda_wrapper(core_f,self.control_pars)
		
		self.compile_attempt = False
コード例 #3
0
    def generate_f_lambda(self, simplify=None, do_cse=False):
        """
		translates the symbolic derivative to a function using SymEngines `Lambdify` or `LambdifyCSE`.
		
		Parameters
		----------
		simplify : boolean
			Whether the derivative should be `simplified <http://docs.sympy.org/dev/modules/simplify/simplify.html>`_ (with `ratio=1.0`) before translating to C code. The main reason why you could want to enable this is if you expect your derivative not to be optimised and not be so large that simplifying takes a considerable amount of time. If `None`, this will be automatically disabled for `n>10`.
		
		do_cse : boolean
			Whether a common-subexpression detection, namely `LambdifyCSE`, should be used.
		"""

        self._prepare_lambdas()

        # working copy
        f_sym_wc = (ordered_subs(entry, self._lambda_subs)
                    for entry in self.f_sym())

        if simplify is None:
            simplify = self.n <= 10
        if simplify:
            f_sym_wc = (entry.simplify(ratio=1.0) for entry in f_sym_wc)

        lambdify = symengine.LambdifyCSE if do_cse else symengine.Lambdify
        core_f = lambdify(self._lambda_args, list(f_sym_wc))
        self.f = lambda t, Y: core_f(np.hstack([t, Y, self.control_par_values])
                                     )

        self.compile_attempt = False
コード例 #4
0
    def generate_jac_lambda(self, do_cse=False):
        """
		translates the symbolic Jacobain to a function using SymEngines `Lambdify` or `LambdifyCSE`. If the symbolic Jacobian has not been generated, it is generated by calling `generate_jac_sym`.
		
		Parameters
		----------
		do_cse : boolean
			Whether a common-subexpression detection, namely `LambdifyCSE`, should be used.
		"""

        self._prepare_lambdas()

        jac_matrix = symengine.Matrix(
            [[ordered_subs(entry, self._lambda_subs) for entry in line]
             for line in self.jac_sym])

        lambdify = symengine.LambdifyCSE if do_cse else symengine.Lambdify
        core_jac = lambdify(self._lambda_args, jac_matrix)
        self.jac = lambda t, Y: core_jac(
            np.hstack([t, Y, self.control_par_values]))

        self.compile_attempt = False
コード例 #5
0
ファイル: _jitcode.py プロジェクト: neurophysik/jitcode
	def generate_jac_lambda(self,do_cse=False):
		"""
		translates the symbolic Jacobain to a function using SymEngines `Lambdify` or `LambdifyCSE`. If the symbolic Jacobian has not been generated, it is generated by calling `generate_jac_sym`.
		
		Parameters
		----------
		do_cse : boolean
			Whether a common-subexpression detection, namely `LambdifyCSE`, should be used.
		"""
		
		self._prepare_lambdas()
		
		jac_matrix = symengine.Matrix([
				[ordered_subs(entry,self._lambda_subs) for entry in line]
				for line in self.jac_sym
			])
		
		lambdify = symengine.LambdifyCSE if do_cse else symengine.Lambdify
		core_jac = lambdify(self._lambda_args,jac_matrix)
		# self.jac = lambda t,Y,*c_pars: core_jac(np.hstack([t,Y,c_pars]))
		self.jac = _lambda_wrapper(core_jac,self.control_pars)
		
		self.compile_attempt = False