コード例 #1
0
 def execute(self, x):
     if self.num_parameters != 1:
         assert self.num_parameters == x.size(
             1), f"num_parameters does not match input channels in PReLU"
         return jt.maximum(
             0, x) + self.a.broadcast(x, [0, 2, 3]) * jt.minimum(0, x)
     else:
         return jt.maximum(0, x) + self.a * jt.minimum(0, x)
コード例 #2
0
ファイル: utils.py プロジェクト: yiranran/APDrawingGAN-Jittor
def partCombiner2_bg(center,
                     eyel,
                     eyer,
                     nose,
                     mouth,
                     hair,
                     bg,
                     maskh,
                     maskb,
                     comb_op=1,
                     load_h=512,
                     load_w=512):
    if comb_op == 0:
        # use max pooling, pad black for eyes etc
        padvalue = -1
        hair = masked(hair, maskh)
        bg = masked(bg, maskb)
    else:
        # use min pooling, pad white for eyes etc
        padvalue = 1
        hair = addone_with_mask(hair, maskh)
        bg = addone_with_mask(bg, maskb)
    ratio = load_h // 256
    rhs = np.array([EYE_H, EYE_H, NOSE_H, MOUTH_H]) * ratio
    rws = np.array([EYE_W, EYE_W, NOSE_W, MOUTH_W]) * ratio
    bs, nc, _, _ = eyel.shape
    eyel_p = jt.ones((bs, nc, load_h, load_w))
    eyer_p = jt.ones((bs, nc, load_h, load_w))
    nose_p = jt.ones((bs, nc, load_h, load_w))
    mouth_p = jt.ones((bs, nc, load_h, load_w))
    locals = [eyel, eyer, nose, mouth]
    locals_p = [eyel_p, eyer_p, nose_p, mouth_p]
    for i in range(bs):
        c = center[i].data  #x,y
        for j in range(4):
            locals_p[j][i] = jt.nn.ConstantPad2d(
                (int(c[j, 0] - rws[j] / 2), int(load_w -
                                                (c[j, 0] + rws[j] / 2)),
                 int(c[j, 1] - rhs[j] / 2), int(load_h -
                                                (c[j, 1] + rhs[j] / 2))),
                padvalue)(locals[j][i])
    if comb_op == 0:
        eyes = jt.maximum(locals_p[0], locals_p[1])
        eye_nose = jt.maximum(eyes, locals_p[2])
        eye_nose_mouth = jt.maximum(eye_nose, locals_p[3])
        eye_nose_mouth_hair = jt.maximum(hair, eye_nose_mouth)
        result = jt.maximum(bg, eye_nose_mouth_hair)
    else:
        eyes = jt.minimum(locals_p[0], locals_p[1])
        eye_nose = jt.minimum(eyes, locals_p[2])
        eye_nose_mouth = jt.minimum(eye_nose, locals_p[3])
        eye_nose_mouth_hair = jt.minimum(hair, eye_nose_mouth)
        result = jt.minimum(bg, eye_nose_mouth_hair)
    return result
コード例 #3
0
ファイル: general.py プロジェクト: li-xl/yolo.jittor
def bbox_iou(box1,
             box2,
             x1y1x2y2=True,
             GIoU=False,
             DIoU=False,
             CIoU=False,
             eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.transpose(1, 0)

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (jt.minimum(b1_x2, b2_x2) - jt.maximum(b1_x1, b2_x1)).clamp(0) * \
            (jt.minimum(b1_y2, b2_y2) - jt.maximum(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union
    if GIoU or DIoU or CIoU:
        cw = jt.maximum(b1_x2, b2_x2) - jt.minimum(
            b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = jt.maximum(b1_y2, b2_y2) - jt.minimum(b1_y1,
                                                   b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw**2 + ch**2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2)**2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2)**
                    2) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * jt.pow(
                    jt.atan(w2 / h2) - jt.atan(w1 / h1), 2)
                with jt.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU
コード例 #4
0
def sample_pdf(bins, weights, N_samples, det=False):
    # Get pdf
    weights = weights + 1e-5  # prevent nans
    pdf = weights / jt.sum(weights, -1, keepdims=True)
    cdf = jt.cumsum(pdf, -1)
    cdf = jt.concat([jt.zeros_like(cdf[..., :1]), cdf],
                    -1)  # (batch, len(bins))

    # Take uniform samples
    if det:
        u = jt.linspace(0., 1., steps=N_samples)
        u = u.expand(list(cdf.shape[:-1]) + [N_samples])
    else:
        u = jt.random(list(cdf.shape[:-1]) + [N_samples])

    # Invert CDF
    inds = jt.searchsorted(cdf, u, right=True)
    below = jt.maximum(jt.zeros_like(inds - 1), inds - 1)
    above = jt.minimum((cdf.shape[-1] - 1) * jt.ones_like(inds), inds)
    inds_g = jt.stack([below, above], -1)  # (batch, N_samples, 2)

    matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
    cdf_g = jt.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
    bins_g = jt.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)

    denom = (cdf_g[..., 1] - cdf_g[..., 0])
    denom[denom < 1e-5] = 1.0
    t = (u - cdf_g[..., 0]) / denom
    samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])

    return samples
コード例 #5
0
 def metric(k):  # compute metric
     r = wh[:, None] / k[None]
     x = jt.minimum(r, 1. / r).min(2)  # ratio metric
     best = x.max(1)  # best_x
     aat = (x > 1. / thr).float().sum(1).mean()  # anchors above threshold
     bpr = (best > 1. / thr).float().mean()  # best possible recall
     return bpr, aat
コード例 #6
0
ファイル: general.py プロジェクト: li-xl/yolo.jittor
def wh_iou(wh1, wh2):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = jt.minimum(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter
                    )  # iou = inter / (area1 + area2 - inter)
コード例 #7
0
    def training_step(self, batch, batch_idx):
        noises = jt.array(
            np.random.randn(*batch['action'].shape).astype(np.float32)
        ) * self.FLAGS.policy_noise  # TODO: use jt randomness
        noises = noises.clamp(-self.FLAGS.noise_clip, self.FLAGS.noise_clip)
        next_actions = self.policy_target(
            batch['next_observation']).add(noises).clamp(-1, 1)
        next_qfs = [
            qfn(batch['next_observation'], next_actions)
            for qfn in self.qfns_target
        ]
        min_next_qf = jt.minimum(next_qfs[0], next_qfs[1])
        qf_ = (batch['reward'] + (1 - batch['done'].float32()) *
               self.FLAGS.gamma * min_next_qf).detach()

        qfn_losses = [
            nn.mse_loss(qfn(batch['observation'], batch['action']), qf_)
            for qfn in self.qfns
        ]

        self.qfns_opt.step(qfn_losses[0] + qfn_losses[1])

        if self.n_batches % self.FLAGS.policy_freq == 0:
            policy_loss = -self.qfns[0](batch['observation'],
                                        self.policy(
                                            batch['observation'])).mean()
            self.policy_opt.step(policy_loss)

            polyak_copy(self.policy, self.policy_target, self.FLAGS.tau)
            for qfn, qfn_target in zip(self.qfns, self.qfns_target):
                polyak_copy(qfn, qfn_target, self.FLAGS.tau)
        return {'loss': [qfn_loss.data for qfn_loss in qfn_losses]}
コード例 #8
0
    def execute(self, pred, target, weight=None):
        pred_left = pred[:, 0]
        pred_top = pred[:, 1]
        pred_right = pred[:, 2]
        pred_bottom = pred[:, 3]

        target_left = target[:, 0]
        target_top = target[:, 1]
        target_right = target[:, 2]
        target_bottom = target[:, 3]

        target_area = (target_left + target_right) * \
                      (target_top + target_bottom)
        pred_area = (pred_left + pred_right) * \
                    (pred_top + pred_bottom)

        w_intersect = jt.minimum(pred_left, target_left) + jt.minimum(
            pred_right, target_right)
        g_w_intersect = jt.maximum(pred_left, target_left) + jt.maximum(
            pred_right, target_right)
        h_intersect = jt.minimum(pred_bottom, target_bottom) + jt.minimum(
            pred_top, target_top)
        g_h_intersect = jt.maximum(pred_bottom, target_bottom) + jt.maximum(
            pred_top, target_top)
        ac_uion = g_w_intersect * g_h_intersect + 1e-7
        area_intersect = w_intersect * h_intersect
        area_union = target_area + pred_area - area_intersect
        ious = (area_intersect + 1.0) / (area_union + 1.0)
        gious = ious - (ac_uion - area_union) / ac_uion
        if self.loc_loss_type == 'iou':
            losses = -jt.log(ious)
        elif self.loc_loss_type == 'linear_iou':
            losses = 1 - ious
        elif self.loc_loss_type == 'giou':
            losses = 1 - gious
        else:
            raise NotImplementedError

        if weight is not None and weight.sum() > 0:
            return (losses * weight).sum() / weight.sum()
        else:
            assert losses.numel() != 0
            return losses.mean()
コード例 #9
0
 def test_min(self):
     np.random.seed(1)
     a = np.random.rand(5,10).astype("float32")
     b = np.random.rand(5,10).astype("float32")
     ja = jt.array(a)
     jb = jt.array(b)
     jc = jt.minimum(ja,jb)
     assert (jc.data==np.minimum(a,b)).all(), f"\n{jc.data}\n{np.minimum(a,b)}\n{a}\n{b}"
     jda, jdb = jt.grad(jc, [ja, jb])
     assert (jda.data==(a<b)*1).all()
     assert (jdb.data==1-(a<b)).all()
コード例 #10
0
def bbox_iou(bbox_a, bbox_b):
    assert bbox_a.shape[1]==4 and bbox_b.shape[1]==4

    # top left
    tl = jt.maximum(bbox_a[:, :2].unsqueeze(1), bbox_b[:, :2])
    # bottom right
    br = jt.minimum(bbox_a[:,2:].unsqueeze(1), bbox_b[:, 2:])

    area_i = jt.prod(br - tl, dim=2) * (tl < br).all(dim=2)
    area_a = jt.prod(bbox_a[:, 2:] - bbox_a[:, :2], dim=1)
    area_b = jt.prod(bbox_b[:, 2:] - bbox_b[:, :2], dim=1)
    return area_i / (area_a.unsqueeze(1) + area_b - area_i)
コード例 #11
0
ファイル: box_utils.py プロジェクト: li-xl/Yolact.jittor
def elemwise_box_iou(box_a, box_b):
    """ Does the same as above but instead of pairwise, elementwise along the inner dimension. """
    max_xy = jt.minimum(box_a[:, 2:], box_b[:, 2:])
    min_xy = jt.maximum(box_a[:, :2], box_b[:, :2])
    inter = jt.clamp((max_xy - min_xy), min_v=0)
    inter = inter[:, 0] * inter[:, 1]

    area_a = (box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])
    area_b = (box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])

    union = area_a + area_b - inter
    union = jt.clamp(union, min_v=0.1)

    # Return value is [n] for inputs [n, 4]
    return jt.clamp(inter / union, max_v=1)
コード例 #12
0
ファイル: box_utils.py プロジェクト: li-xl/Yolact.jittor
def intersect(box_a, box_b):
    """ We resize both tensors to [A,B,2] without new malloc:
    [A,2] -> [A,1,2] -> [A,B,2]
    [B,2] -> [1,B,2] -> [A,B,2]
    Then we compute the area of intersect between box_a and box_b.
    Args:
      box_a: (tensor) bounding boxes, Shape: [n,A,4].
      box_b: (tensor) bounding boxes, Shape: [n,B,4].
    Return:
      (tensor) intersection area, Shape: [n,A,B].
    """
    n = box_a.shape[0]
    A = box_a.shape[1]
    B = box_b.shape[1]
    max_xy = jt.minimum(box_a[:, :, 2:].unsqueeze(2).expand((n, A, B, 2)),
                        box_b[:, :, 2:].unsqueeze(1).expand((n, A, B, 2)))
    min_xy = jt.maximum(box_a[:, :, :2].unsqueeze(2).expand((n, A, B, 2)),
                        box_b[:, :, :2].unsqueeze(1).expand((n, A, B, 2)))
    return jt.clamp(max_xy - min_xy, min_v=0).prod(3)  # inter
コード例 #13
0
def intersect(box_a, box_b):
    """ We resize both tensors to [A,B,2] without new malloc:
    [A,2] -> [A,1,2] -> [A,B,2]
    [B,2] -> [1,B,2] -> [A,B,2]
    Then we compute the area of intersect between box_a and box_b.
    Args:
      box_a: (tensor) bounding boxes, Shape: [A,4].
      box_b: (tensor) bounding boxes, Shape: [B,4].
    Return:
      (tensor) intersection area, Shape: [A,B].
    """
    A = box_a.size(0)
    B = box_b.size(0)
    max_xy = jt.minimum(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
                       box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
    min_xy = jt.maximum(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
                       box_b[:, :2].unsqueeze(0).expand(A, B, 2))
    inter = jt.clamp((max_xy - min_xy), min_v=0)
    return inter[:, :, 0] * inter[:, :, 1]
コード例 #14
0
ファイル: boxlist_ops.py プロジェクト: li-xl/detectron.jittor
def boxlist_partly_overlap(boxlist1, boxlist2):
    """Compute the intersection over union of two set of boxes.
    The box order must be (xmin, ymin, xmax, ymax).

    Arguments:
      box1: (BoxList) bounding boxes, sized [N,4].
      box2: (BoxList) bounding boxes, sized [M,4].

    Returns:
      (tensor) iou, sized [N,M].

    Reference:
      https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py
    """
    if boxlist1.size != boxlist2.size:
        raise RuntimeError(
            "boxlists should have same image size, got {}, {}".format(
                boxlist1, boxlist2))

    N = len(boxlist1)
    M = len(boxlist2)

    area1 = boxlist1.area()
    area2 = boxlist2.area()

    box1, box2 = boxlist1.bbox, boxlist2.bbox

    lt = jt.maximum(box1[:, :2].unsqueeze(1), box2[:, :2])  # [N,M,2]
    rb = jt.minimum(box1[:, 2:].unsqueeze(1), box2[:, 2:])  # [N,M,2]

    TO_REMOVE = 1

    wh = (rb - lt + TO_REMOVE).clamp(min_v=0, max_v=999999)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    iou = inter / (area1[:].unsqueeze(1) + area2 - inter)
    overlap = iou > 0
    not_complete_overlap = (inter - area1[:].unsqueeze(1)) * (
        inter - area2[:].unsqueeze(0)) != 0
    partly_overlap = overlap * not_complete_overlap

    return partly_overlap
コード例 #15
0
ファイル: box_utils.py プロジェクト: li-xl/Yolact.jittor
def sanitize_coordinates(_x1,
                         _x2,
                         img_size: int,
                         padding: int = 0,
                         cast: bool = True):
    """
    Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0, and x2 <= image_size.
    Also converts from relative to absolute coordinates and casts the results to long tensors.

    If cast is false, the result won't be cast to longs.
    Warning: this does things in-place behind the scenes so copy if necessary.
    """
    _x1 = _x1 * img_size
    _x2 = _x2 * img_size
    if cast:
        _x1 = _x1.int32()
        _x2 = _x2.int32()
    x1 = jt.minimum(_x1, _x2)
    x2 = jt.maximum(_x1, _x2)
    x1 = jt.clamp(x1 - padding, min_v=0)
    x2 = jt.clamp(x2 + padding, max_v=img_size)

    return x1, x2
コード例 #16
0
    def clip_grad_norm(self, max_norm:float, norm_type:int=2):
        r"""Clips gradient norm of this optimizer.
        The norm is computed over all gradients together.

        Args:
            max_norm (float or int): max norm of the gradients
            norm_type (int): 1-norm or 2-norm

        Example::

            a = jt.ones(2)
            opt = jt.optim.SGD([a], 0.1)

            loss = a*a
            opt.zero_grad()
            opt.backward(loss)

            print(opt.param_groups[0]['grads'][0].norm()) # output: 2.83
            opt.clip_grad_norm(0.01, 2)
            print(opt.param_groups[0]['grads'][0].norm()) # output: 0.01
            
            opt.step()

        """
        if self.__zero_grad: return
        grads = []
        for pg in self.param_groups:
            for p, g in zip(pg["params"], pg["grads"]):
                if p.is_stop_grad(): continue
                grads.append(g.flatten())
        if len(grads) == 0: return
        total_norm = jt.norm(jt.concat(grads), norm_type)
        clip_coef = jt.minimum(max_norm / (total_norm + 1e-6), 1.0)
        for pg in self.param_groups:
            for p, g in zip(pg["params"], pg["grads"]):
                if p.is_stop_grad(): continue
                g *= clip_coef
コード例 #17
0
ファイル: general.py プロジェクト: li-xl/yolo.jittor
def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """
    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.transpose(1, 0))
    area2 = box_area(box2.transpose(1, 0))

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (jt.minimum(box1[:, None, 2:], box2[:, 2:]) -
             jt.maximum(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter
                    )  # iou = inter / (area1 + area2 - inter)
コード例 #18
0
def relu6(x):
    return jt.minimum(jt.maximum(x, 0), 6)
コード例 #19
0
 def metric(k, wh):  # compute metrics
     r = wh[:, None] / k[None]
     x = jt.minimum(r, 1. / r).min(2)  # ratio metric
     # x = wh_iou(wh, torch.tensor(k))  # iou metric
     return x, x.max(1)  # x, best_x
コード例 #20
0
def relu6(x): return jt.minimum(jt.maximum(x, 0), 6)

class PReLU(Module):